MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0iun Structured version   Visualization version   GIF version

Theorem 0iun 5030
Description: An empty indexed union is empty. (Contributed by NM, 4-Dec-2004.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
0iun 𝑥 ∈ ∅ 𝐴 = ∅

Proof of Theorem 0iun
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 rex0 4326 . . 3 ¬ ∃𝑥 ∈ ∅ 𝑦𝐴
2 eliun 4962 . . 3 (𝑦 𝑥 ∈ ∅ 𝐴 ↔ ∃𝑥 ∈ ∅ 𝑦𝐴)
31, 2mtbir 323 . 2 ¬ 𝑦 𝑥 ∈ ∅ 𝐴
43nel0 4320 1 𝑥 ∈ ∅ 𝐴 = ∅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  wrex 3054  c0 4299   ciun 4958
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-v 3452  df-dif 3920  df-nul 4300  df-iun 4960
This theorem is referenced by:  iinvdif  5047  iununi  5066  iunfi  9301  pwsdompw  10163  fsum2d  15744  fsumiun  15794  fprod2d  15954  prmreclem4  16897  prmreclem5  16898  fiuncmp  23298  ovolfiniun  25409  ovoliunnul  25415  finiunmbl  25452  volfiniun  25455  volsup  25464  gsumpart  33004  esum2dlem  34089  sigapildsyslem  34158  fiunelros  34171  mrsubvrs  35516  0totbnd  37774  totbndbnd  37790  fiiuncl  45066  sge0iunmptlemfi  46418  caragenfiiuncl  46520  carageniuncllem1  46526
  Copyright terms: Public domain W3C validator