Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 0iun | Structured version Visualization version GIF version |
Description: An empty indexed union is empty. (Contributed by NM, 4-Dec-2004.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
Ref | Expression |
---|---|
0iun | ⊢ ∪ 𝑥 ∈ ∅ 𝐴 = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rex0 4288 | . . 3 ⊢ ¬ ∃𝑥 ∈ ∅ 𝑦 ∈ 𝐴 | |
2 | eliun 4925 | . . 3 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ ∅ 𝐴 ↔ ∃𝑥 ∈ ∅ 𝑦 ∈ 𝐴) | |
3 | 1, 2 | mtbir 322 | . 2 ⊢ ¬ 𝑦 ∈ ∪ 𝑥 ∈ ∅ 𝐴 |
4 | 3 | nel0 4281 | 1 ⊢ ∪ 𝑥 ∈ ∅ 𝐴 = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2108 ∃wrex 3064 ∅c0 4253 ∪ ciun 4921 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-v 3424 df-dif 3886 df-nul 4254 df-iun 4923 |
This theorem is referenced by: iinvdif 5005 iununi 5024 iunfi 9037 pwsdompw 9891 fsum2d 15411 fsumiun 15461 fprod2d 15619 prmreclem4 16548 prmreclem5 16549 fiuncmp 22463 ovolfiniun 24570 ovoliunnul 24576 finiunmbl 24613 volfiniun 24616 volsup 24625 gsumpart 31217 esum2dlem 31960 sigapildsyslem 32029 fiunelros 32042 mrsubvrs 33384 0totbnd 35858 totbndbnd 35874 fiiuncl 42502 sge0iunmptlemfi 43841 caragenfiiuncl 43943 carageniuncllem1 43949 |
Copyright terms: Public domain | W3C validator |