![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0iun | Structured version Visualization version GIF version |
Description: An empty indexed union is empty. (Contributed by NM, 4-Dec-2004.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
Ref | Expression |
---|---|
0iun | ⊢ ∪ 𝑥 ∈ ∅ 𝐴 = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rex0 4383 | . . 3 ⊢ ¬ ∃𝑥 ∈ ∅ 𝑦 ∈ 𝐴 | |
2 | eliun 5019 | . . 3 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ ∅ 𝐴 ↔ ∃𝑥 ∈ ∅ 𝑦 ∈ 𝐴) | |
3 | 1, 2 | mtbir 323 | . 2 ⊢ ¬ 𝑦 ∈ ∪ 𝑥 ∈ ∅ 𝐴 |
4 | 3 | nel0 4377 | 1 ⊢ ∪ 𝑥 ∈ ∅ 𝐴 = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2108 ∃wrex 3076 ∅c0 4352 ∪ ciun 5015 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-v 3490 df-dif 3979 df-nul 4353 df-iun 5017 |
This theorem is referenced by: iinvdif 5103 iununi 5122 iunfi 9411 pwsdompw 10272 fsum2d 15819 fsumiun 15869 fprod2d 16029 prmreclem4 16966 prmreclem5 16967 fiuncmp 23433 ovolfiniun 25555 ovoliunnul 25561 finiunmbl 25598 volfiniun 25601 volsup 25610 gsumpart 33038 esum2dlem 34056 sigapildsyslem 34125 fiunelros 34138 mrsubvrs 35490 0totbnd 37733 totbndbnd 37749 fiiuncl 44967 sge0iunmptlemfi 46334 caragenfiiuncl 46436 carageniuncllem1 46442 |
Copyright terms: Public domain | W3C validator |