| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0iun | Structured version Visualization version GIF version | ||
| Description: An empty indexed union is empty. (Contributed by NM, 4-Dec-2004.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
| Ref | Expression |
|---|---|
| 0iun | ⊢ ∪ 𝑥 ∈ ∅ 𝐴 = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rex0 4311 | . . 3 ⊢ ¬ ∃𝑥 ∈ ∅ 𝑦 ∈ 𝐴 | |
| 2 | eliun 4945 | . . 3 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ ∅ 𝐴 ↔ ∃𝑥 ∈ ∅ 𝑦 ∈ 𝐴) | |
| 3 | 1, 2 | mtbir 323 | . 2 ⊢ ¬ 𝑦 ∈ ∪ 𝑥 ∈ ∅ 𝐴 |
| 4 | 3 | nel0 4305 | 1 ⊢ ∪ 𝑥 ∈ ∅ 𝐴 = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ∃wrex 3053 ∅c0 4284 ∪ ciun 4941 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-v 3438 df-dif 3906 df-nul 4285 df-iun 4943 |
| This theorem is referenced by: iinvdif 5029 iununi 5048 iunfi 9233 pwsdompw 10097 fsum2d 15678 fsumiun 15728 fprod2d 15888 prmreclem4 16831 prmreclem5 16832 fiuncmp 23289 ovolfiniun 25400 ovoliunnul 25406 finiunmbl 25443 volfiniun 25446 volsup 25455 gsumpart 33011 esum2dlem 34065 sigapildsyslem 34134 fiunelros 34147 mrsubvrs 35505 0totbnd 37763 totbndbnd 37779 fiiuncl 45053 sge0iunmptlemfi 46404 caragenfiiuncl 46506 carageniuncllem1 46512 |
| Copyright terms: Public domain | W3C validator |