MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0iun Structured version   Visualization version   GIF version

Theorem 0iun 5063
Description: An empty indexed union is empty. (Contributed by NM, 4-Dec-2004.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
0iun 𝑥 ∈ ∅ 𝐴 = ∅

Proof of Theorem 0iun
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 rex0 4360 . . 3 ¬ ∃𝑥 ∈ ∅ 𝑦𝐴
2 eliun 4995 . . 3 (𝑦 𝑥 ∈ ∅ 𝐴 ↔ ∃𝑥 ∈ ∅ 𝑦𝐴)
31, 2mtbir 323 . 2 ¬ 𝑦 𝑥 ∈ ∅ 𝐴
43nel0 4354 1 𝑥 ∈ ∅ 𝐴 = ∅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2108  wrex 3070  c0 4333   ciun 4991
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3062  df-rex 3071  df-v 3482  df-dif 3954  df-nul 4334  df-iun 4993
This theorem is referenced by:  iinvdif  5080  iununi  5099  iunfi  9383  pwsdompw  10243  fsum2d  15807  fsumiun  15857  fprod2d  16017  prmreclem4  16957  prmreclem5  16958  fiuncmp  23412  ovolfiniun  25536  ovoliunnul  25542  finiunmbl  25579  volfiniun  25582  volsup  25591  gsumpart  33060  esum2dlem  34093  sigapildsyslem  34162  fiunelros  34175  mrsubvrs  35527  0totbnd  37780  totbndbnd  37796  fiiuncl  45070  sge0iunmptlemfi  46428  caragenfiiuncl  46530  carageniuncllem1  46536
  Copyright terms: Public domain W3C validator