| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0iun | Structured version Visualization version GIF version | ||
| Description: An empty indexed union is empty. (Contributed by NM, 4-Dec-2004.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
| Ref | Expression |
|---|---|
| 0iun | ⊢ ∪ 𝑥 ∈ ∅ 𝐴 = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rex0 4307 | . . 3 ⊢ ¬ ∃𝑥 ∈ ∅ 𝑦 ∈ 𝐴 | |
| 2 | eliun 4943 | . . 3 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ ∅ 𝐴 ↔ ∃𝑥 ∈ ∅ 𝑦 ∈ 𝐴) | |
| 3 | 1, 2 | mtbir 323 | . 2 ⊢ ¬ 𝑦 ∈ ∪ 𝑥 ∈ ∅ 𝐴 |
| 4 | 3 | nel0 4301 | 1 ⊢ ∪ 𝑥 ∈ ∅ 𝐴 = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 ∃wrex 3056 ∅c0 4280 ∪ ciun 4939 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-v 3438 df-dif 3900 df-nul 4281 df-iun 4941 |
| This theorem is referenced by: iinvdif 5026 iununi 5045 iunfi 9227 pwsdompw 10094 fsum2d 15678 fsumiun 15728 fprod2d 15888 prmreclem4 16831 prmreclem5 16832 fiuncmp 23319 ovolfiniun 25429 ovoliunnul 25435 finiunmbl 25472 volfiniun 25475 volsup 25484 gsumpart 33037 esum2dlem 34105 sigapildsyslem 34174 fiunelros 34187 mrsubvrs 35566 0totbnd 37823 totbndbnd 37839 fiiuncl 45172 sge0iunmptlemfi 46521 caragenfiiuncl 46623 carageniuncllem1 46629 |
| Copyright terms: Public domain | W3C validator |