![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0iun | Structured version Visualization version GIF version |
Description: An empty indexed union is empty. (Contributed by NM, 4-Dec-2004.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
Ref | Expression |
---|---|
0iun | ⊢ ∪ 𝑥 ∈ ∅ 𝐴 = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rex0 4365 | . . 3 ⊢ ¬ ∃𝑥 ∈ ∅ 𝑦 ∈ 𝐴 | |
2 | eliun 4999 | . . 3 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ ∅ 𝐴 ↔ ∃𝑥 ∈ ∅ 𝑦 ∈ 𝐴) | |
3 | 1, 2 | mtbir 323 | . 2 ⊢ ¬ 𝑦 ∈ ∪ 𝑥 ∈ ∅ 𝐴 |
4 | 3 | nel0 4359 | 1 ⊢ ∪ 𝑥 ∈ ∅ 𝐴 = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1536 ∈ wcel 2105 ∃wrex 3067 ∅c0 4338 ∪ ciun 4995 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1539 df-fal 1549 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-ral 3059 df-rex 3068 df-v 3479 df-dif 3965 df-nul 4339 df-iun 4997 |
This theorem is referenced by: iinvdif 5084 iununi 5103 iunfi 9380 pwsdompw 10240 fsum2d 15803 fsumiun 15853 fprod2d 16013 prmreclem4 16952 prmreclem5 16953 fiuncmp 23427 ovolfiniun 25549 ovoliunnul 25555 finiunmbl 25592 volfiniun 25595 volsup 25604 gsumpart 33042 esum2dlem 34072 sigapildsyslem 34141 fiunelros 34154 mrsubvrs 35506 0totbnd 37759 totbndbnd 37775 fiiuncl 45004 sge0iunmptlemfi 46368 caragenfiiuncl 46470 carageniuncllem1 46476 |
Copyright terms: Public domain | W3C validator |