| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0iun | Structured version Visualization version GIF version | ||
| Description: An empty indexed union is empty. (Contributed by NM, 4-Dec-2004.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
| Ref | Expression |
|---|---|
| 0iun | ⊢ ∪ 𝑥 ∈ ∅ 𝐴 = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rex0 4326 | . . 3 ⊢ ¬ ∃𝑥 ∈ ∅ 𝑦 ∈ 𝐴 | |
| 2 | eliun 4962 | . . 3 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ ∅ 𝐴 ↔ ∃𝑥 ∈ ∅ 𝑦 ∈ 𝐴) | |
| 3 | 1, 2 | mtbir 323 | . 2 ⊢ ¬ 𝑦 ∈ ∪ 𝑥 ∈ ∅ 𝐴 |
| 4 | 3 | nel0 4320 | 1 ⊢ ∪ 𝑥 ∈ ∅ 𝐴 = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ∃wrex 3054 ∅c0 4299 ∪ ciun 4958 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-v 3452 df-dif 3920 df-nul 4300 df-iun 4960 |
| This theorem is referenced by: iinvdif 5047 iununi 5066 iunfi 9301 pwsdompw 10163 fsum2d 15744 fsumiun 15794 fprod2d 15954 prmreclem4 16897 prmreclem5 16898 fiuncmp 23298 ovolfiniun 25409 ovoliunnul 25415 finiunmbl 25452 volfiniun 25455 volsup 25464 gsumpart 33004 esum2dlem 34089 sigapildsyslem 34158 fiunelros 34171 mrsubvrs 35516 0totbnd 37774 totbndbnd 37790 fiiuncl 45066 sge0iunmptlemfi 46418 caragenfiiuncl 46520 carageniuncllem1 46526 |
| Copyright terms: Public domain | W3C validator |