MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0iun Structured version   Visualization version   GIF version

Theorem 0iun 5012
Description: An empty indexed union is empty. (Contributed by NM, 4-Dec-2004.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
0iun 𝑥 ∈ ∅ 𝐴 = ∅

Proof of Theorem 0iun
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 rex0 4311 . . 3 ¬ ∃𝑥 ∈ ∅ 𝑦𝐴
2 eliun 4945 . . 3 (𝑦 𝑥 ∈ ∅ 𝐴 ↔ ∃𝑥 ∈ ∅ 𝑦𝐴)
31, 2mtbir 323 . 2 ¬ 𝑦 𝑥 ∈ ∅ 𝐴
43nel0 4305 1 𝑥 ∈ ∅ 𝐴 = ∅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  wrex 3053  c0 4284   ciun 4941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-v 3438  df-dif 3906  df-nul 4285  df-iun 4943
This theorem is referenced by:  iinvdif  5029  iununi  5048  iunfi  9233  pwsdompw  10097  fsum2d  15678  fsumiun  15728  fprod2d  15888  prmreclem4  16831  prmreclem5  16832  fiuncmp  23289  ovolfiniun  25400  ovoliunnul  25406  finiunmbl  25443  volfiniun  25446  volsup  25455  gsumpart  33011  esum2dlem  34065  sigapildsyslem  34134  fiunelros  34147  mrsubvrs  35505  0totbnd  37763  totbndbnd  37779  fiiuncl  45053  sge0iunmptlemfi  46404  caragenfiiuncl  46506  carageniuncllem1  46512
  Copyright terms: Public domain W3C validator