![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0iun | Structured version Visualization version GIF version |
Description: An empty indexed union is empty. (Contributed by NM, 4-Dec-2004.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
Ref | Expression |
---|---|
0iun | ⊢ ∪ 𝑥 ∈ ∅ 𝐴 = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rex0 4358 | . . 3 ⊢ ¬ ∃𝑥 ∈ ∅ 𝑦 ∈ 𝐴 | |
2 | eliun 5002 | . . 3 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ ∅ 𝐴 ↔ ∃𝑥 ∈ ∅ 𝑦 ∈ 𝐴) | |
3 | 1, 2 | mtbir 323 | . 2 ⊢ ¬ 𝑦 ∈ ∪ 𝑥 ∈ ∅ 𝐴 |
4 | 3 | nel0 4351 | 1 ⊢ ∪ 𝑥 ∈ ∅ 𝐴 = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 ∈ wcel 2107 ∃wrex 3071 ∅c0 4323 ∪ ciun 4998 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3063 df-rex 3072 df-v 3477 df-dif 3952 df-nul 4324 df-iun 5000 |
This theorem is referenced by: iinvdif 5084 iununi 5103 iunfi 9340 pwsdompw 10199 fsum2d 15717 fsumiun 15767 fprod2d 15925 prmreclem4 16852 prmreclem5 16853 fiuncmp 22908 ovolfiniun 25018 ovoliunnul 25024 finiunmbl 25061 volfiniun 25064 volsup 25073 gsumpart 32207 esum2dlem 33090 sigapildsyslem 33159 fiunelros 33172 mrsubvrs 34513 0totbnd 36641 totbndbnd 36657 fiiuncl 43752 sge0iunmptlemfi 45129 caragenfiiuncl 45231 carageniuncllem1 45237 |
Copyright terms: Public domain | W3C validator |