Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 0iun | Structured version Visualization version GIF version |
Description: An empty indexed union is empty. (Contributed by NM, 4-Dec-2004.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
Ref | Expression |
---|---|
0iun | ⊢ ∪ 𝑥 ∈ ∅ 𝐴 = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rex0 4291 | . . 3 ⊢ ¬ ∃𝑥 ∈ ∅ 𝑦 ∈ 𝐴 | |
2 | eliun 4928 | . . 3 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ ∅ 𝐴 ↔ ∃𝑥 ∈ ∅ 𝑦 ∈ 𝐴) | |
3 | 1, 2 | mtbir 323 | . 2 ⊢ ¬ 𝑦 ∈ ∪ 𝑥 ∈ ∅ 𝐴 |
4 | 3 | nel0 4284 | 1 ⊢ ∪ 𝑥 ∈ ∅ 𝐴 = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2106 ∃wrex 3065 ∅c0 4256 ∪ ciun 4924 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-v 3434 df-dif 3890 df-nul 4257 df-iun 4926 |
This theorem is referenced by: iinvdif 5009 iununi 5028 iunfi 9107 pwsdompw 9960 fsum2d 15483 fsumiun 15533 fprod2d 15691 prmreclem4 16620 prmreclem5 16621 fiuncmp 22555 ovolfiniun 24665 ovoliunnul 24671 finiunmbl 24708 volfiniun 24711 volsup 24720 gsumpart 31315 esum2dlem 32060 sigapildsyslem 32129 fiunelros 32142 mrsubvrs 33484 0totbnd 35931 totbndbnd 35947 fiiuncl 42613 sge0iunmptlemfi 43951 caragenfiiuncl 44053 carageniuncllem1 44059 |
Copyright terms: Public domain | W3C validator |