MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0iun Structured version   Visualization version   GIF version

Theorem 0iun 5027
Description: An empty indexed union is empty. (Contributed by NM, 4-Dec-2004.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
0iun 𝑥 ∈ ∅ 𝐴 = ∅

Proof of Theorem 0iun
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 rex0 4323 . . 3 ¬ ∃𝑥 ∈ ∅ 𝑦𝐴
2 eliun 4959 . . 3 (𝑦 𝑥 ∈ ∅ 𝐴 ↔ ∃𝑥 ∈ ∅ 𝑦𝐴)
31, 2mtbir 323 . 2 ¬ 𝑦 𝑥 ∈ ∅ 𝐴
43nel0 4317 1 𝑥 ∈ ∅ 𝐴 = ∅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  wrex 3053  c0 4296   ciun 4955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-v 3449  df-dif 3917  df-nul 4297  df-iun 4957
This theorem is referenced by:  iinvdif  5044  iununi  5063  iunfi  9294  pwsdompw  10156  fsum2d  15737  fsumiun  15787  fprod2d  15947  prmreclem4  16890  prmreclem5  16891  fiuncmp  23291  ovolfiniun  25402  ovoliunnul  25408  finiunmbl  25445  volfiniun  25448  volsup  25457  gsumpart  32997  esum2dlem  34082  sigapildsyslem  34151  fiunelros  34164  mrsubvrs  35509  0totbnd  37767  totbndbnd  37783  fiiuncl  45059  sge0iunmptlemfi  46411  caragenfiiuncl  46513  carageniuncllem1  46519
  Copyright terms: Public domain W3C validator