| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0iun | Structured version Visualization version GIF version | ||
| Description: An empty indexed union is empty. (Contributed by NM, 4-Dec-2004.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
| Ref | Expression |
|---|---|
| 0iun | ⊢ ∪ 𝑥 ∈ ∅ 𝐴 = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rex0 4319 | . . 3 ⊢ ¬ ∃𝑥 ∈ ∅ 𝑦 ∈ 𝐴 | |
| 2 | eliun 4955 | . . 3 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ ∅ 𝐴 ↔ ∃𝑥 ∈ ∅ 𝑦 ∈ 𝐴) | |
| 3 | 1, 2 | mtbir 323 | . 2 ⊢ ¬ 𝑦 ∈ ∪ 𝑥 ∈ ∅ 𝐴 |
| 4 | 3 | nel0 4313 | 1 ⊢ ∪ 𝑥 ∈ ∅ 𝐴 = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ∃wrex 3053 ∅c0 4292 ∪ ciun 4951 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-v 3446 df-dif 3914 df-nul 4293 df-iun 4953 |
| This theorem is referenced by: iinvdif 5039 iununi 5058 iunfi 9270 pwsdompw 10132 fsum2d 15713 fsumiun 15763 fprod2d 15923 prmreclem4 16866 prmreclem5 16867 fiuncmp 23324 ovolfiniun 25435 ovoliunnul 25441 finiunmbl 25478 volfiniun 25481 volsup 25490 gsumpart 33040 esum2dlem 34075 sigapildsyslem 34144 fiunelros 34157 mrsubvrs 35502 0totbnd 37760 totbndbnd 37776 fiiuncl 45052 sge0iunmptlemfi 46404 caragenfiiuncl 46506 carageniuncllem1 46512 |
| Copyright terms: Public domain | W3C validator |