| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0iun | Structured version Visualization version GIF version | ||
| Description: An empty indexed union is empty. (Contributed by NM, 4-Dec-2004.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
| Ref | Expression |
|---|---|
| 0iun | ⊢ ∪ 𝑥 ∈ ∅ 𝐴 = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rex0 4335 | . . 3 ⊢ ¬ ∃𝑥 ∈ ∅ 𝑦 ∈ 𝐴 | |
| 2 | eliun 4971 | . . 3 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ ∅ 𝐴 ↔ ∃𝑥 ∈ ∅ 𝑦 ∈ 𝐴) | |
| 3 | 1, 2 | mtbir 323 | . 2 ⊢ ¬ 𝑦 ∈ ∪ 𝑥 ∈ ∅ 𝐴 |
| 4 | 3 | nel0 4329 | 1 ⊢ ∪ 𝑥 ∈ ∅ 𝐴 = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2108 ∃wrex 3060 ∅c0 4308 ∪ ciun 4967 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-v 3461 df-dif 3929 df-nul 4309 df-iun 4969 |
| This theorem is referenced by: iinvdif 5056 iununi 5075 iunfi 9353 pwsdompw 10215 fsum2d 15785 fsumiun 15835 fprod2d 15995 prmreclem4 16937 prmreclem5 16938 fiuncmp 23340 ovolfiniun 25452 ovoliunnul 25458 finiunmbl 25495 volfiniun 25498 volsup 25507 gsumpart 32997 esum2dlem 34069 sigapildsyslem 34138 fiunelros 34151 mrsubvrs 35490 0totbnd 37743 totbndbnd 37759 fiiuncl 45037 sge0iunmptlemfi 46390 caragenfiiuncl 46492 carageniuncllem1 46498 |
| Copyright terms: Public domain | W3C validator |