MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0iun Structured version   Visualization version   GIF version

Theorem 0iun 5022
Description: An empty indexed union is empty. (Contributed by NM, 4-Dec-2004.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
0iun 𝑥 ∈ ∅ 𝐴 = ∅

Proof of Theorem 0iun
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 rex0 4319 . . 3 ¬ ∃𝑥 ∈ ∅ 𝑦𝐴
2 eliun 4955 . . 3 (𝑦 𝑥 ∈ ∅ 𝐴 ↔ ∃𝑥 ∈ ∅ 𝑦𝐴)
31, 2mtbir 323 . 2 ¬ 𝑦 𝑥 ∈ ∅ 𝐴
43nel0 4313 1 𝑥 ∈ ∅ 𝐴 = ∅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  wrex 3053  c0 4292   ciun 4951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-v 3446  df-dif 3914  df-nul 4293  df-iun 4953
This theorem is referenced by:  iinvdif  5039  iununi  5058  iunfi  9270  pwsdompw  10132  fsum2d  15713  fsumiun  15763  fprod2d  15923  prmreclem4  16866  prmreclem5  16867  fiuncmp  23324  ovolfiniun  25435  ovoliunnul  25441  finiunmbl  25478  volfiniun  25481  volsup  25490  gsumpart  33040  esum2dlem  34075  sigapildsyslem  34144  fiunelros  34157  mrsubvrs  35502  0totbnd  37760  totbndbnd  37776  fiiuncl  45052  sge0iunmptlemfi  46404  caragenfiiuncl  46506  carageniuncllem1  46512
  Copyright terms: Public domain W3C validator