Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dm0 | Structured version Visualization version GIF version |
Description: The domain of the empty set is empty. Part of Theorem 3.8(v) of [Monk1] p. 36. (Contributed by NM, 4-Jul-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
dm0 | ⊢ dom ∅ = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noel 4261 | . . . 4 ⊢ ¬ 〈𝑥, 𝑦〉 ∈ ∅ | |
2 | 1 | nex 1804 | . . 3 ⊢ ¬ ∃𝑦〈𝑥, 𝑦〉 ∈ ∅ |
3 | vex 3426 | . . . 4 ⊢ 𝑥 ∈ V | |
4 | 3 | eldm2 5799 | . . 3 ⊢ (𝑥 ∈ dom ∅ ↔ ∃𝑦〈𝑥, 𝑦〉 ∈ ∅) |
5 | 2, 4 | mtbir 322 | . 2 ⊢ ¬ 𝑥 ∈ dom ∅ |
6 | 5 | nel0 4281 | 1 ⊢ dom ∅ = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∃wex 1783 ∈ wcel 2108 ∅c0 4253 〈cop 4564 dom cdm 5580 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-dm 5590 |
This theorem is referenced by: rn0 5824 dmxpid 5828 dmxpss 6063 fn0 6548 f0dom0 6642 f10d 6733 f1o00 6734 0fv 6795 1stval 7806 bropopvvv 7901 bropfvvvv 7903 supp0 7953 tz7.44lem1 8207 tz7.44-2 8209 tz7.44-3 8210 oicl 9218 oif 9219 swrd0 14299 dmtrclfv 14657 relexpdmd 14683 symgsssg 18990 symgfisg 18991 psgnunilem5 19017 dvbsss 24971 perfdvf 24972 uhgr0e 27344 uhgr0 27346 usgr0 27513 egrsubgr 27547 0grsubgr 27548 vtxdg0e 27744 eupth0 28479 dmadjrnb 30169 eldmne0 30864 f1ocnt 31025 tocyccntz 31313 mbfmcst 32126 0rrv 32318 matunitlindf 35702 ismgmOLD 35935 conrel2d 41161 neicvgbex 41611 iblempty 43396 |
Copyright terms: Public domain | W3C validator |