![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dm0 | Structured version Visualization version GIF version |
Description: The domain of the empty set is empty. Part of Theorem 3.8(v) of [Monk1] p. 36. (Contributed by NM, 4-Jul-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
dm0 | ⊢ dom ∅ = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noel 4120 | . . . 4 ⊢ ¬ 〈𝑥, 𝑦〉 ∈ ∅ | |
2 | 1 | nex 1896 | . . 3 ⊢ ¬ ∃𝑦〈𝑥, 𝑦〉 ∈ ∅ |
3 | vex 3389 | . . . 4 ⊢ 𝑥 ∈ V | |
4 | 3 | eldm2 5526 | . . 3 ⊢ (𝑥 ∈ dom ∅ ↔ ∃𝑦〈𝑥, 𝑦〉 ∈ ∅) |
5 | 2, 4 | mtbir 315 | . 2 ⊢ ¬ 𝑥 ∈ dom ∅ |
6 | 5 | nel0 4133 | 1 ⊢ dom ∅ = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1653 ∃wex 1875 ∈ wcel 2157 ∅c0 4116 〈cop 4375 dom cdm 5313 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2378 ax-ext 2778 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2787 df-cleq 2793 df-clel 2796 df-nfc 2931 df-rab 3099 df-v 3388 df-dif 3773 df-un 3775 df-in 3777 df-ss 3784 df-nul 4117 df-if 4279 df-sn 4370 df-pr 4372 df-op 4376 df-br 4845 df-dm 5323 |
This theorem is referenced by: dmxpid 5549 rn0 5582 dmxpss 5783 fn0 6223 f0dom0 6305 f10d 6390 f1o00 6391 0fv 6452 1stval 7404 bropopvvv 7493 bropfvvvv 7495 supp0 7538 tz7.44lem1 7741 tz7.44-2 7743 tz7.44-3 7744 oicl 8677 oif 8678 swrd0 13686 dmtrclfv 14099 symgsssg 18198 symgfisg 18199 psgnunilem5 18225 psgnunilem5OLD 18226 dvbsss 24006 perfdvf 24007 uhgr0e 26305 uhgr0 26307 usgr0 26476 egrsubgr 26510 0grsubgr 26511 vtxdg0e 26723 eupth0 27557 dmadjrnb 29289 f1ocnt 30076 mbfmcst 30836 0rrv 31029 matunitlindf 33895 ismgmOLD 34135 conrel2d 38734 neicvgbex 39187 iblempty 40919 |
Copyright terms: Public domain | W3C validator |