![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dm0 | Structured version Visualization version GIF version |
Description: The domain of the empty set is empty. Part of Theorem 3.8(v) of [Monk1] p. 36. (Contributed by NM, 4-Jul-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
dm0 | ⊢ dom ∅ = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noel 4329 | . . . 4 ⊢ ¬ ⟨𝑥, 𝑦⟩ ∈ ∅ | |
2 | 1 | nex 1802 | . . 3 ⊢ ¬ ∃𝑦⟨𝑥, 𝑦⟩ ∈ ∅ |
3 | vex 3478 | . . . 4 ⊢ 𝑥 ∈ V | |
4 | 3 | eldm2 5899 | . . 3 ⊢ (𝑥 ∈ dom ∅ ↔ ∃𝑦⟨𝑥, 𝑦⟩ ∈ ∅) |
5 | 2, 4 | mtbir 322 | . 2 ⊢ ¬ 𝑥 ∈ dom ∅ |
6 | 5 | nel0 4349 | 1 ⊢ dom ∅ = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 ∃wex 1781 ∈ wcel 2106 ∅c0 4321 ⟨cop 4633 dom cdm 5675 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-br 5148 df-dm 5685 |
This theorem is referenced by: rn0 5923 dmxpid 5927 dmxpss 6167 fn0 6678 f0dom0 6772 f10d 6864 f1o00 6865 0fv 6932 1stval 7973 bropopvvv 8072 bropfvvvv 8074 supp0 8147 tz7.44lem1 8401 tz7.44-2 8403 tz7.44-3 8404 oicl 9520 oif 9521 swrd0 14604 dmtrclfv 14961 relexpdmd 14987 symgsssg 19329 symgfisg 19330 psgnunilem5 19356 dvbsss 25410 perfdvf 25411 uhgr0e 28320 uhgr0 28322 usgr0 28489 egrsubgr 28523 0grsubgr 28524 vtxdg0e 28720 eupth0 29456 dmadjrnb 31146 eldmne0 31839 f1ocnt 32000 tocyccntz 32290 mbfmcst 33246 0rrv 33438 matunitlindf 36474 ismgmOLD 36706 conrel2d 42400 neicvgbex 42848 iblempty 44667 |
Copyright terms: Public domain | W3C validator |