Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dm0 | Structured version Visualization version GIF version |
Description: The domain of the empty set is empty. Part of Theorem 3.8(v) of [Monk1] p. 36. (Contributed by NM, 4-Jul-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
dm0 | ⊢ dom ∅ = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noel 4264 | . . . 4 ⊢ ¬ 〈𝑥, 𝑦〉 ∈ ∅ | |
2 | 1 | nex 1803 | . . 3 ⊢ ¬ ∃𝑦〈𝑥, 𝑦〉 ∈ ∅ |
3 | vex 3436 | . . . 4 ⊢ 𝑥 ∈ V | |
4 | 3 | eldm2 5810 | . . 3 ⊢ (𝑥 ∈ dom ∅ ↔ ∃𝑦〈𝑥, 𝑦〉 ∈ ∅) |
5 | 2, 4 | mtbir 323 | . 2 ⊢ ¬ 𝑥 ∈ dom ∅ |
6 | 5 | nel0 4284 | 1 ⊢ dom ∅ = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∃wex 1782 ∈ wcel 2106 ∅c0 4256 〈cop 4567 dom cdm 5589 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-dm 5599 |
This theorem is referenced by: rn0 5835 dmxpid 5839 dmxpss 6074 fn0 6564 f0dom0 6658 f10d 6750 f1o00 6751 0fv 6813 1stval 7833 bropopvvv 7930 bropfvvvv 7932 supp0 7982 tz7.44lem1 8236 tz7.44-2 8238 tz7.44-3 8239 oicl 9288 oif 9289 swrd0 14371 dmtrclfv 14729 relexpdmd 14755 symgsssg 19075 symgfisg 19076 psgnunilem5 19102 dvbsss 25066 perfdvf 25067 uhgr0e 27441 uhgr0 27443 usgr0 27610 egrsubgr 27644 0grsubgr 27645 vtxdg0e 27841 eupth0 28578 dmadjrnb 30268 eldmne0 30963 f1ocnt 31123 tocyccntz 31411 mbfmcst 32226 0rrv 32418 matunitlindf 35775 ismgmOLD 36008 conrel2d 41272 neicvgbex 41722 iblempty 43506 |
Copyright terms: Public domain | W3C validator |