| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dm0 | Structured version Visualization version GIF version | ||
| Description: The domain of the empty set is empty. Part of Theorem 3.8(v) of [Monk1] p. 36. (Contributed by NM, 4-Jul-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| dm0 | ⊢ dom ∅ = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | noel 4287 | . . . 4 ⊢ ¬ 〈𝑥, 𝑦〉 ∈ ∅ | |
| 2 | 1 | nex 1801 | . . 3 ⊢ ¬ ∃𝑦〈𝑥, 𝑦〉 ∈ ∅ |
| 3 | vex 3441 | . . . 4 ⊢ 𝑥 ∈ V | |
| 4 | 3 | eldm2 5845 | . . 3 ⊢ (𝑥 ∈ dom ∅ ↔ ∃𝑦〈𝑥, 𝑦〉 ∈ ∅) |
| 5 | 2, 4 | mtbir 323 | . 2 ⊢ ¬ 𝑥 ∈ dom ∅ |
| 6 | 5 | nel0 4303 | 1 ⊢ dom ∅ = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∃wex 1780 ∈ wcel 2113 ∅c0 4282 〈cop 4581 dom cdm 5619 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-br 5094 df-dm 5629 |
| This theorem is referenced by: rn0 5870 dmxpid 5874 dmxpss 6123 fn0 6617 f0dom0 6712 f10d 6802 f1o00 6803 0fv 6869 1stval 7929 bropopvvv 8026 bropfvvvv 8028 supp0 8101 tz7.44lem1 8330 tz7.44-2 8332 tz7.44-3 8333 oicl 9422 oif 9423 swrd0 14568 dmtrclfv 14927 relexpdmd 14953 nulchn 18527 symgsssg 19381 symgfisg 19382 psgnunilem5 19408 dvbsss 25831 perfdvf 25832 uhgr0e 29051 uhgr0 29053 usgr0 29223 egrsubgr 29257 0grsubgr 29258 vtxdg0e 29455 eupth0 30196 dmadjrnb 31888 eldmne0 32611 of0r 32664 f1ocnt 32787 tocyccntz 33120 mbfmcst 34293 0rrv 34485 matunitlindf 37679 ismgmOLD 37911 conrel2d 43782 neicvgbex 44230 iblempty 46088 dmrnxp 48962 reldmprcof1 49507 reldmprcof2 49508 reldmlan2 49743 reldmran2 49744 |
| Copyright terms: Public domain | W3C validator |