| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dm0 | Structured version Visualization version GIF version | ||
| Description: The domain of the empty set is empty. Part of Theorem 3.8(v) of [Monk1] p. 36. (Contributed by NM, 4-Jul-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| dm0 | ⊢ dom ∅ = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | noel 4288 | . . . 4 ⊢ ¬ 〈𝑥, 𝑦〉 ∈ ∅ | |
| 2 | 1 | nex 1801 | . . 3 ⊢ ¬ ∃𝑦〈𝑥, 𝑦〉 ∈ ∅ |
| 3 | vex 3440 | . . . 4 ⊢ 𝑥 ∈ V | |
| 4 | 3 | eldm2 5841 | . . 3 ⊢ (𝑥 ∈ dom ∅ ↔ ∃𝑦〈𝑥, 𝑦〉 ∈ ∅) |
| 5 | 2, 4 | mtbir 323 | . 2 ⊢ ¬ 𝑥 ∈ dom ∅ |
| 6 | 5 | nel0 4304 | 1 ⊢ dom ∅ = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∃wex 1780 ∈ wcel 2111 ∅c0 4283 〈cop 4582 dom cdm 5616 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-br 5092 df-dm 5626 |
| This theorem is referenced by: rn0 5866 dmxpid 5870 dmxpss 6118 fn0 6612 f0dom0 6707 f10d 6797 f1o00 6798 0fv 6863 1stval 7923 bropopvvv 8020 bropfvvvv 8022 supp0 8095 tz7.44lem1 8324 tz7.44-2 8326 tz7.44-3 8327 oicl 9415 oif 9416 swrd0 14563 dmtrclfv 14922 relexpdmd 14948 nulchn 18522 symgsssg 19377 symgfisg 19378 psgnunilem5 19404 dvbsss 25828 perfdvf 25829 uhgr0e 29047 uhgr0 29049 usgr0 29219 egrsubgr 29253 0grsubgr 29254 vtxdg0e 29451 eupth0 30189 dmadjrnb 31881 eldmne0 32604 of0r 32655 f1ocnt 32777 tocyccntz 33108 mbfmcst 34267 0rrv 34459 matunitlindf 37657 ismgmOLD 37889 conrel2d 43696 neicvgbex 44144 iblempty 46002 dmrnxp 48867 reldmprcof1 49412 reldmprcof2 49413 reldmlan2 49648 reldmran2 49649 |
| Copyright terms: Public domain | W3C validator |