| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dm0 | Structured version Visualization version GIF version | ||
| Description: The domain of the empty set is empty. Part of Theorem 3.8(v) of [Monk1] p. 36. (Contributed by NM, 4-Jul-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| dm0 | ⊢ dom ∅ = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | noel 4304 | . . . 4 ⊢ ¬ 〈𝑥, 𝑦〉 ∈ ∅ | |
| 2 | 1 | nex 1800 | . . 3 ⊢ ¬ ∃𝑦〈𝑥, 𝑦〉 ∈ ∅ |
| 3 | vex 3454 | . . . 4 ⊢ 𝑥 ∈ V | |
| 4 | 3 | eldm2 5868 | . . 3 ⊢ (𝑥 ∈ dom ∅ ↔ ∃𝑦〈𝑥, 𝑦〉 ∈ ∅) |
| 5 | 2, 4 | mtbir 323 | . 2 ⊢ ¬ 𝑥 ∈ dom ∅ |
| 6 | 5 | nel0 4320 | 1 ⊢ dom ∅ = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∅c0 4299 〈cop 4598 dom cdm 5641 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-dm 5651 |
| This theorem is referenced by: rn0 5892 dmxpid 5897 dmxpss 6147 fn0 6652 f0dom0 6747 f10d 6837 f1o00 6838 0fv 6905 1stval 7973 bropopvvv 8072 bropfvvvv 8074 supp0 8147 tz7.44lem1 8376 tz7.44-2 8378 tz7.44-3 8379 oicl 9489 oif 9490 swrd0 14630 dmtrclfv 14991 relexpdmd 15017 symgsssg 19404 symgfisg 19405 psgnunilem5 19431 dvbsss 25810 perfdvf 25811 uhgr0e 29005 uhgr0 29007 usgr0 29177 egrsubgr 29211 0grsubgr 29212 vtxdg0e 29409 eupth0 30150 dmadjrnb 31842 eldmne0 32559 of0r 32609 f1ocnt 32732 tocyccntz 33108 mbfmcst 34257 0rrv 34449 matunitlindf 37619 ismgmOLD 37851 conrel2d 43660 neicvgbex 44108 iblempty 45970 dmrnxp 48829 reldmprcof1 49374 reldmprcof2 49375 reldmlan2 49610 reldmran2 49611 |
| Copyright terms: Public domain | W3C validator |