| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dm0 | Structured version Visualization version GIF version | ||
| Description: The domain of the empty set is empty. Part of Theorem 3.8(v) of [Monk1] p. 36. (Contributed by NM, 4-Jul-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| dm0 | ⊢ dom ∅ = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | noel 4291 | . . . 4 ⊢ ¬ 〈𝑥, 𝑦〉 ∈ ∅ | |
| 2 | 1 | nex 1800 | . . 3 ⊢ ¬ ∃𝑦〈𝑥, 𝑦〉 ∈ ∅ |
| 3 | vex 3442 | . . . 4 ⊢ 𝑥 ∈ V | |
| 4 | 3 | eldm2 5848 | . . 3 ⊢ (𝑥 ∈ dom ∅ ↔ ∃𝑦〈𝑥, 𝑦〉 ∈ ∅) |
| 5 | 2, 4 | mtbir 323 | . 2 ⊢ ¬ 𝑥 ∈ dom ∅ |
| 6 | 5 | nel0 4307 | 1 ⊢ dom ∅ = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∅c0 4286 〈cop 4585 dom cdm 5623 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-br 5096 df-dm 5633 |
| This theorem is referenced by: rn0 5872 dmxpid 5876 dmxpss 6124 fn0 6617 f0dom0 6712 f10d 6802 f1o00 6803 0fv 6868 1stval 7933 bropopvvv 8030 bropfvvvv 8032 supp0 8105 tz7.44lem1 8334 tz7.44-2 8336 tz7.44-3 8337 oicl 9440 oif 9441 swrd0 14583 dmtrclfv 14943 relexpdmd 14969 symgsssg 19364 symgfisg 19365 psgnunilem5 19391 dvbsss 25819 perfdvf 25820 uhgr0e 29034 uhgr0 29036 usgr0 29206 egrsubgr 29240 0grsubgr 29241 vtxdg0e 29438 eupth0 30176 dmadjrnb 31868 eldmne0 32585 of0r 32635 f1ocnt 32758 tocyccntz 33099 mbfmcst 34226 0rrv 34418 matunitlindf 37597 ismgmOLD 37829 conrel2d 43637 neicvgbex 44085 iblempty 45947 dmrnxp 48822 reldmprcof1 49367 reldmprcof2 49368 reldmlan2 49603 reldmran2 49604 |
| Copyright terms: Public domain | W3C validator |