Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dm0 | Structured version Visualization version GIF version |
Description: The domain of the empty set is empty. Part of Theorem 3.8(v) of [Monk1] p. 36. (Contributed by NM, 4-Jul-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
dm0 | ⊢ dom ∅ = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noel 4232 | . . . 4 ⊢ ¬ 〈𝑥, 𝑦〉 ∈ ∅ | |
2 | 1 | nex 1802 | . . 3 ⊢ ¬ ∃𝑦〈𝑥, 𝑦〉 ∈ ∅ |
3 | vex 3413 | . . . 4 ⊢ 𝑥 ∈ V | |
4 | 3 | eldm2 5746 | . . 3 ⊢ (𝑥 ∈ dom ∅ ↔ ∃𝑦〈𝑥, 𝑦〉 ∈ ∅) |
5 | 2, 4 | mtbir 326 | . 2 ⊢ ¬ 𝑥 ∈ dom ∅ |
6 | 5 | nel0 4251 | 1 ⊢ dom ∅ = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1538 ∃wex 1781 ∈ wcel 2111 ∅c0 4227 〈cop 4531 dom cdm 5527 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-ext 2729 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-v 3411 df-dif 3863 df-un 3865 df-nul 4228 df-sn 4526 df-pr 4528 df-op 4532 df-br 5036 df-dm 5537 |
This theorem is referenced by: rn0 5771 dmxpid 5775 dmxpss 6004 fn0 6466 f0dom0 6552 f10d 6639 f1o00 6640 0fv 6701 1stval 7700 bropopvvv 7795 bropfvvvv 7797 supp0 7845 tz7.44lem1 8056 tz7.44-2 8058 tz7.44-3 8059 oicl 9031 oif 9032 swrd0 14072 dmtrclfv 14430 relexpdmd 14456 symgsssg 18667 symgfisg 18668 psgnunilem5 18694 dvbsss 24606 perfdvf 24607 uhgr0e 26968 uhgr0 26970 usgr0 27137 egrsubgr 27171 0grsubgr 27172 vtxdg0e 27368 eupth0 28103 dmadjrnb 29793 eldmne0 30490 f1ocnt 30651 tocyccntz 30941 mbfmcst 31749 0rrv 31941 matunitlindf 35361 ismgmOLD 35594 conrel2d 40766 neicvgbex 41216 iblempty 43001 |
Copyright terms: Public domain | W3C validator |