| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dm0 | Structured version Visualization version GIF version | ||
| Description: The domain of the empty set is empty. Part of Theorem 3.8(v) of [Monk1] p. 36. (Contributed by NM, 4-Jul-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| dm0 | ⊢ dom ∅ = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | noel 4301 | . . . 4 ⊢ ¬ 〈𝑥, 𝑦〉 ∈ ∅ | |
| 2 | 1 | nex 1800 | . . 3 ⊢ ¬ ∃𝑦〈𝑥, 𝑦〉 ∈ ∅ |
| 3 | vex 3451 | . . . 4 ⊢ 𝑥 ∈ V | |
| 4 | 3 | eldm2 5865 | . . 3 ⊢ (𝑥 ∈ dom ∅ ↔ ∃𝑦〈𝑥, 𝑦〉 ∈ ∅) |
| 5 | 2, 4 | mtbir 323 | . 2 ⊢ ¬ 𝑥 ∈ dom ∅ |
| 6 | 5 | nel0 4317 | 1 ⊢ dom ∅ = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∅c0 4296 〈cop 4595 dom cdm 5638 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-dm 5648 |
| This theorem is referenced by: rn0 5889 dmxpid 5894 dmxpss 6144 fn0 6649 f0dom0 6744 f10d 6834 f1o00 6835 0fv 6902 1stval 7970 bropopvvv 8069 bropfvvvv 8071 supp0 8144 tz7.44lem1 8373 tz7.44-2 8375 tz7.44-3 8376 oicl 9482 oif 9483 swrd0 14623 dmtrclfv 14984 relexpdmd 15010 symgsssg 19397 symgfisg 19398 psgnunilem5 19424 dvbsss 25803 perfdvf 25804 uhgr0e 28998 uhgr0 29000 usgr0 29170 egrsubgr 29204 0grsubgr 29205 vtxdg0e 29402 eupth0 30143 dmadjrnb 31835 eldmne0 32552 of0r 32602 f1ocnt 32725 tocyccntz 33101 mbfmcst 34250 0rrv 34442 matunitlindf 37612 ismgmOLD 37844 conrel2d 43653 neicvgbex 44101 iblempty 45963 dmrnxp 48825 reldmprcof1 49370 reldmprcof2 49371 reldmlan2 49606 reldmran2 49607 |
| Copyright terms: Public domain | W3C validator |