| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dm0 | Structured version Visualization version GIF version | ||
| Description: The domain of the empty set is empty. Part of Theorem 3.8(v) of [Monk1] p. 36. (Contributed by NM, 4-Jul-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| dm0 | ⊢ dom ∅ = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | noel 4313 | . . . 4 ⊢ ¬ 〈𝑥, 𝑦〉 ∈ ∅ | |
| 2 | 1 | nex 1800 | . . 3 ⊢ ¬ ∃𝑦〈𝑥, 𝑦〉 ∈ ∅ |
| 3 | vex 3463 | . . . 4 ⊢ 𝑥 ∈ V | |
| 4 | 3 | eldm2 5881 | . . 3 ⊢ (𝑥 ∈ dom ∅ ↔ ∃𝑦〈𝑥, 𝑦〉 ∈ ∅) |
| 5 | 2, 4 | mtbir 323 | . 2 ⊢ ¬ 𝑥 ∈ dom ∅ |
| 6 | 5 | nel0 4329 | 1 ⊢ dom ∅ = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∃wex 1779 ∈ wcel 2108 ∅c0 4308 〈cop 4607 dom cdm 5654 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-dm 5664 |
| This theorem is referenced by: rn0 5905 dmxpid 5910 dmxpss 6160 fn0 6669 f0dom0 6762 f10d 6852 f1o00 6853 0fv 6920 1stval 7990 bropopvvv 8089 bropfvvvv 8091 supp0 8164 tz7.44lem1 8419 tz7.44-2 8421 tz7.44-3 8422 oicl 9543 oif 9544 swrd0 14676 dmtrclfv 15037 relexpdmd 15063 symgsssg 19448 symgfisg 19449 psgnunilem5 19475 dvbsss 25855 perfdvf 25856 uhgr0e 29050 uhgr0 29052 usgr0 29222 egrsubgr 29256 0grsubgr 29257 vtxdg0e 29454 eupth0 30195 dmadjrnb 31887 eldmne0 32606 of0r 32656 f1ocnt 32779 tocyccntz 33155 mbfmcst 34291 0rrv 34483 matunitlindf 37642 ismgmOLD 37874 conrel2d 43688 neicvgbex 44136 iblempty 45994 dmrnxp 48815 reldmprcof1 49291 reldmprcof2 49292 reldmlan2 49492 reldmran2 49493 |
| Copyright terms: Public domain | W3C validator |