![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dm0 | Structured version Visualization version GIF version |
Description: The domain of the empty set is empty. Part of Theorem 3.8(v) of [Monk1] p. 36. (Contributed by NM, 4-Jul-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
dm0 | ⊢ dom ∅ = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noel 4360 | . . . 4 ⊢ ¬ 〈𝑥, 𝑦〉 ∈ ∅ | |
2 | 1 | nex 1798 | . . 3 ⊢ ¬ ∃𝑦〈𝑥, 𝑦〉 ∈ ∅ |
3 | vex 3492 | . . . 4 ⊢ 𝑥 ∈ V | |
4 | 3 | eldm2 5926 | . . 3 ⊢ (𝑥 ∈ dom ∅ ↔ ∃𝑦〈𝑥, 𝑦〉 ∈ ∅) |
5 | 2, 4 | mtbir 323 | . 2 ⊢ ¬ 𝑥 ∈ dom ∅ |
6 | 5 | nel0 4377 | 1 ⊢ dom ∅ = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∃wex 1777 ∈ wcel 2108 ∅c0 4352 〈cop 4654 dom cdm 5700 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-dm 5710 |
This theorem is referenced by: rn0 5950 dmxpid 5955 dmxpss 6202 fn0 6711 f0dom0 6805 f10d 6896 f1o00 6897 0fv 6964 1stval 8032 bropopvvv 8131 bropfvvvv 8133 supp0 8206 tz7.44lem1 8461 tz7.44-2 8463 tz7.44-3 8464 oicl 9598 oif 9599 swrd0 14706 dmtrclfv 15067 relexpdmd 15093 symgsssg 19509 symgfisg 19510 psgnunilem5 19536 dvbsss 25957 perfdvf 25958 uhgr0e 29106 uhgr0 29108 usgr0 29278 egrsubgr 29312 0grsubgr 29313 vtxdg0e 29510 eupth0 30246 dmadjrnb 31938 eldmne0 32647 of0r 32696 f1ocnt 32807 tocyccntz 33137 mbfmcst 34224 0rrv 34416 matunitlindf 37578 ismgmOLD 37810 conrel2d 43626 neicvgbex 44074 iblempty 45886 |
Copyright terms: Public domain | W3C validator |