![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dm0 | Structured version Visualization version GIF version |
Description: The domain of the empty set is empty. Part of Theorem 3.8(v) of [Monk1] p. 36. (Contributed by NM, 4-Jul-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
dm0 | ⊢ dom ∅ = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noel 4331 | . . . 4 ⊢ ¬ ⟨𝑥, 𝑦⟩ ∈ ∅ | |
2 | 1 | nex 1803 | . . 3 ⊢ ¬ ∃𝑦⟨𝑥, 𝑦⟩ ∈ ∅ |
3 | vex 3479 | . . . 4 ⊢ 𝑥 ∈ V | |
4 | 3 | eldm2 5902 | . . 3 ⊢ (𝑥 ∈ dom ∅ ↔ ∃𝑦⟨𝑥, 𝑦⟩ ∈ ∅) |
5 | 2, 4 | mtbir 323 | . 2 ⊢ ¬ 𝑥 ∈ dom ∅ |
6 | 5 | nel0 4351 | 1 ⊢ dom ∅ = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 ∃wex 1782 ∈ wcel 2107 ∅c0 4323 ⟨cop 4635 dom cdm 5677 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5150 df-dm 5687 |
This theorem is referenced by: rn0 5926 dmxpid 5930 dmxpss 6171 fn0 6682 f0dom0 6776 f10d 6868 f1o00 6869 0fv 6936 1stval 7977 bropopvvv 8076 bropfvvvv 8078 supp0 8151 tz7.44lem1 8405 tz7.44-2 8407 tz7.44-3 8408 oicl 9524 oif 9525 swrd0 14608 dmtrclfv 14965 relexpdmd 14991 symgsssg 19335 symgfisg 19336 psgnunilem5 19362 dvbsss 25419 perfdvf 25420 uhgr0e 28331 uhgr0 28333 usgr0 28500 egrsubgr 28534 0grsubgr 28535 vtxdg0e 28731 eupth0 29467 dmadjrnb 31159 eldmne0 31852 f1ocnt 32013 tocyccntz 32303 mbfmcst 33258 0rrv 33450 matunitlindf 36486 ismgmOLD 36718 conrel2d 42415 neicvgbex 42863 iblempty 44681 |
Copyright terms: Public domain | W3C validator |