![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dm0 | Structured version Visualization version GIF version |
Description: The domain of the empty set is empty. Part of Theorem 3.8(v) of [Monk1] p. 36. (Contributed by NM, 4-Jul-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
dm0 | ⊢ dom ∅ = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noel 4343 | . . . 4 ⊢ ¬ 〈𝑥, 𝑦〉 ∈ ∅ | |
2 | 1 | nex 1796 | . . 3 ⊢ ¬ ∃𝑦〈𝑥, 𝑦〉 ∈ ∅ |
3 | vex 3481 | . . . 4 ⊢ 𝑥 ∈ V | |
4 | 3 | eldm2 5914 | . . 3 ⊢ (𝑥 ∈ dom ∅ ↔ ∃𝑦〈𝑥, 𝑦〉 ∈ ∅) |
5 | 2, 4 | mtbir 323 | . 2 ⊢ ¬ 𝑥 ∈ dom ∅ |
6 | 5 | nel0 4359 | 1 ⊢ dom ∅ = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1536 ∃wex 1775 ∈ wcel 2105 ∅c0 4338 〈cop 4636 dom cdm 5688 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-br 5148 df-dm 5698 |
This theorem is referenced by: rn0 5938 dmxpid 5943 dmxpss 6192 fn0 6699 f0dom0 6792 f10d 6882 f1o00 6883 0fv 6950 1stval 8014 bropopvvv 8113 bropfvvvv 8115 supp0 8188 tz7.44lem1 8443 tz7.44-2 8445 tz7.44-3 8446 oicl 9566 oif 9567 swrd0 14692 dmtrclfv 15053 relexpdmd 15079 symgsssg 19499 symgfisg 19500 psgnunilem5 19526 dvbsss 25951 perfdvf 25952 uhgr0e 29102 uhgr0 29104 usgr0 29274 egrsubgr 29308 0grsubgr 29309 vtxdg0e 29506 eupth0 30242 dmadjrnb 31934 eldmne0 32644 of0r 32694 f1ocnt 32809 tocyccntz 33146 mbfmcst 34240 0rrv 34432 matunitlindf 37604 ismgmOLD 37836 conrel2d 43653 neicvgbex 44101 iblempty 45920 |
Copyright terms: Public domain | W3C validator |