Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > iun0 | Structured version Visualization version GIF version |
Description: An indexed union of the empty set is empty. (Contributed by NM, 26-Mar-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
Ref | Expression |
---|---|
iun0 | ⊢ ∪ 𝑥 ∈ 𝐴 ∅ = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noel 4269 | . . . . 5 ⊢ ¬ 𝑦 ∈ ∅ | |
2 | 1 | a1i 11 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → ¬ 𝑦 ∈ ∅) |
3 | 2 | nrex 3198 | . . 3 ⊢ ¬ ∃𝑥 ∈ 𝐴 𝑦 ∈ ∅ |
4 | eliun 4933 | . . 3 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 ∅ ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ ∅) | |
5 | 3, 4 | mtbir 322 | . 2 ⊢ ¬ 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 ∅ |
6 | 5 | nel0 4289 | 1 ⊢ ∪ 𝑥 ∈ 𝐴 ∅ = ∅ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1541 ∈ wcel 2109 ∃wrex 3066 ∅c0 4261 ∪ ciun 4929 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1544 df-fal 1554 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-ral 3070 df-rex 3071 df-v 3432 df-dif 3894 df-nul 4262 df-iun 4931 |
This theorem is referenced by: iunxdif3 5028 iununi 5032 funiunfv 7115 om0r 8345 trpred0 9462 kmlem11 9900 ituniiun 10162 dfrtrclrec2 14750 voliunlem1 24695 ofpreima2 30982 esum2dlem 32039 sigaclfu2 32068 measvunilem0 32160 measvuni 32161 cvmscld 33214 ovolval4lem1 44141 |
Copyright terms: Public domain | W3C validator |