| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iun0 | Structured version Visualization version GIF version | ||
| Description: An indexed union of the empty set is empty. (Contributed by NM, 26-Mar-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
| Ref | Expression |
|---|---|
| iun0 | ⊢ ∪ 𝑥 ∈ 𝐴 ∅ = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | noel 4285 | . . . . 5 ⊢ ¬ 𝑦 ∈ ∅ | |
| 2 | 1 | a1i 11 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → ¬ 𝑦 ∈ ∅) |
| 3 | 2 | nrex 3060 | . . 3 ⊢ ¬ ∃𝑥 ∈ 𝐴 𝑦 ∈ ∅ |
| 4 | eliun 4943 | . . 3 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 ∅ ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ ∅) | |
| 5 | 3, 4 | mtbir 323 | . 2 ⊢ ¬ 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 ∅ |
| 6 | 5 | nel0 4301 | 1 ⊢ ∪ 𝑥 ∈ 𝐴 ∅ = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1541 ∈ wcel 2111 ∃wrex 3056 ∅c0 4280 ∪ ciun 4939 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-v 3438 df-dif 3900 df-nul 4281 df-iun 4941 |
| This theorem is referenced by: iunxdif3 5041 iununi 5045 funiunfv 7182 om0r 8454 kmlem11 10052 ituniiun 10313 dfrtrclrec2 14965 voliunlem1 25478 ofpreima2 32648 ssdifidllem 33421 esum2dlem 34105 sigaclfu2 34134 measvunilem0 34226 measvuni 34227 cvmscld 35317 ovolval4lem1 46746 |
| Copyright terms: Public domain | W3C validator |