MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iun0 Structured version   Visualization version   GIF version

Theorem iun0 5011
Description: An indexed union of the empty set is empty. (Contributed by NM, 26-Mar-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
iun0 𝑥𝐴 ∅ = ∅

Proof of Theorem iun0
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 noel 4289 . . . . 5 ¬ 𝑦 ∈ ∅
21a1i 11 . . . 4 (𝑥𝐴 → ¬ 𝑦 ∈ ∅)
32nrex 3057 . . 3 ¬ ∃𝑥𝐴 𝑦 ∈ ∅
4 eliun 4945 . . 3 (𝑦 𝑥𝐴 ∅ ↔ ∃𝑥𝐴 𝑦 ∈ ∅)
53, 4mtbir 323 . 2 ¬ 𝑦 𝑥𝐴
65nel0 4305 1 𝑥𝐴 ∅ = ∅
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1540  wcel 2109  wrex 3053  c0 4284   ciun 4941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-v 3438  df-dif 3906  df-nul 4285  df-iun 4943
This theorem is referenced by:  iunxdif3  5044  iununi  5048  funiunfv  7184  om0r  8457  kmlem11  10055  ituniiun  10316  dfrtrclrec2  14965  voliunlem1  25449  ofpreima2  32617  ssdifidllem  33402  esum2dlem  34075  sigaclfu2  34104  measvunilem0  34196  measvuni  34197  cvmscld  35266  ovolval4lem1  46650
  Copyright terms: Public domain W3C validator