![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iun0 | Structured version Visualization version GIF version |
Description: An indexed union of the empty set is empty. (Contributed by NM, 26-Mar-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
Ref | Expression |
---|---|
iun0 | ⊢ ∪ 𝑥 ∈ 𝐴 ∅ = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noel 4330 | . . . . 5 ⊢ ¬ 𝑦 ∈ ∅ | |
2 | 1 | a1i 11 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → ¬ 𝑦 ∈ ∅) |
3 | 2 | nrex 3074 | . . 3 ⊢ ¬ ∃𝑥 ∈ 𝐴 𝑦 ∈ ∅ |
4 | eliun 5001 | . . 3 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 ∅ ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ ∅) | |
5 | 3, 4 | mtbir 322 | . 2 ⊢ ¬ 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 ∅ |
6 | 5 | nel0 4350 | 1 ⊢ ∪ 𝑥 ∈ 𝐴 ∅ = ∅ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1541 ∈ wcel 2106 ∃wrex 3070 ∅c0 4322 ∪ ciun 4997 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ral 3062 df-rex 3071 df-v 3476 df-dif 3951 df-nul 4323 df-iun 4999 |
This theorem is referenced by: iunxdif3 5098 iununi 5102 funiunfv 7246 om0r 8538 kmlem11 10154 ituniiun 10416 dfrtrclrec2 15004 voliunlem1 25066 ofpreima2 31886 esum2dlem 33085 sigaclfu2 33114 measvunilem0 33206 measvuni 33207 cvmscld 34259 ovolval4lem1 45355 |
Copyright terms: Public domain | W3C validator |