MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iun0 Structured version   Visualization version   GIF version

Theorem iun0 5029
Description: An indexed union of the empty set is empty. (Contributed by NM, 26-Mar-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
iun0 𝑥𝐴 ∅ = ∅

Proof of Theorem iun0
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 noel 4304 . . . . 5 ¬ 𝑦 ∈ ∅
21a1i 11 . . . 4 (𝑥𝐴 → ¬ 𝑦 ∈ ∅)
32nrex 3058 . . 3 ¬ ∃𝑥𝐴 𝑦 ∈ ∅
4 eliun 4962 . . 3 (𝑦 𝑥𝐴 ∅ ↔ ∃𝑥𝐴 𝑦 ∈ ∅)
53, 4mtbir 323 . 2 ¬ 𝑦 𝑥𝐴
65nel0 4320 1 𝑥𝐴 ∅ = ∅
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1540  wcel 2109  wrex 3054  c0 4299   ciun 4958
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-v 3452  df-dif 3920  df-nul 4300  df-iun 4960
This theorem is referenced by:  iunxdif3  5062  iununi  5066  funiunfv  7225  om0r  8506  kmlem11  10121  ituniiun  10382  dfrtrclrec2  15031  voliunlem1  25458  ofpreima2  32597  ssdifidllem  33434  esum2dlem  34089  sigaclfu2  34118  measvunilem0  34210  measvuni  34211  cvmscld  35267  ovolval4lem1  46654
  Copyright terms: Public domain W3C validator