MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iun0 Structured version   Visualization version   GIF version

Theorem iun0 5038
Description: An indexed union of the empty set is empty. (Contributed by NM, 26-Mar-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
iun0 𝑥𝐴 ∅ = ∅

Proof of Theorem iun0
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 noel 4313 . . . . 5 ¬ 𝑦 ∈ ∅
21a1i 11 . . . 4 (𝑥𝐴 → ¬ 𝑦 ∈ ∅)
32nrex 3064 . . 3 ¬ ∃𝑥𝐴 𝑦 ∈ ∅
4 eliun 4971 . . 3 (𝑦 𝑥𝐴 ∅ ↔ ∃𝑥𝐴 𝑦 ∈ ∅)
53, 4mtbir 323 . 2 ¬ 𝑦 𝑥𝐴
65nel0 4329 1 𝑥𝐴 ∅ = ∅
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1540  wcel 2108  wrex 3060  c0 4308   ciun 4967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ral 3052  df-rex 3061  df-v 3461  df-dif 3929  df-nul 4309  df-iun 4969
This theorem is referenced by:  iunxdif3  5071  iununi  5075  funiunfv  7239  om0r  8549  kmlem11  10173  ituniiun  10434  dfrtrclrec2  15075  voliunlem1  25501  ofpreima2  32590  ssdifidllem  33417  esum2dlem  34069  sigaclfu2  34098  measvunilem0  34190  measvuni  34191  cvmscld  35241  ovolval4lem1  46626
  Copyright terms: Public domain W3C validator