| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iun0 | Structured version Visualization version GIF version | ||
| Description: An indexed union of the empty set is empty. (Contributed by NM, 26-Mar-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
| Ref | Expression |
|---|---|
| iun0 | ⊢ ∪ 𝑥 ∈ 𝐴 ∅ = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | noel 4313 | . . . . 5 ⊢ ¬ 𝑦 ∈ ∅ | |
| 2 | 1 | a1i 11 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → ¬ 𝑦 ∈ ∅) |
| 3 | 2 | nrex 3064 | . . 3 ⊢ ¬ ∃𝑥 ∈ 𝐴 𝑦 ∈ ∅ |
| 4 | eliun 4971 | . . 3 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 ∅ ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ ∅) | |
| 5 | 3, 4 | mtbir 323 | . 2 ⊢ ¬ 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 ∅ |
| 6 | 5 | nel0 4329 | 1 ⊢ ∪ 𝑥 ∈ 𝐴 ∅ = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2108 ∃wrex 3060 ∅c0 4308 ∪ ciun 4967 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-v 3461 df-dif 3929 df-nul 4309 df-iun 4969 |
| This theorem is referenced by: iunxdif3 5071 iununi 5075 funiunfv 7239 om0r 8549 kmlem11 10173 ituniiun 10434 dfrtrclrec2 15075 voliunlem1 25501 ofpreima2 32590 ssdifidllem 33417 esum2dlem 34069 sigaclfu2 34098 measvunilem0 34190 measvuni 34191 cvmscld 35241 ovolval4lem1 46626 |
| Copyright terms: Public domain | W3C validator |