MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iun0 Structured version   Visualization version   GIF version

Theorem iun0 5065
Description: An indexed union of the empty set is empty. (Contributed by NM, 26-Mar-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
iun0 𝑥𝐴 ∅ = ∅

Proof of Theorem iun0
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 noel 4330 . . . . 5 ¬ 𝑦 ∈ ∅
21a1i 11 . . . 4 (𝑥𝐴 → ¬ 𝑦 ∈ ∅)
32nrex 3074 . . 3 ¬ ∃𝑥𝐴 𝑦 ∈ ∅
4 eliun 5001 . . 3 (𝑦 𝑥𝐴 ∅ ↔ ∃𝑥𝐴 𝑦 ∈ ∅)
53, 4mtbir 322 . 2 ¬ 𝑦 𝑥𝐴
65nel0 4350 1 𝑥𝐴 ∅ = ∅
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1541  wcel 2106  wrex 3070  c0 4322   ciun 4997
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ral 3062  df-rex 3071  df-v 3476  df-dif 3951  df-nul 4323  df-iun 4999
This theorem is referenced by:  iunxdif3  5098  iununi  5102  funiunfv  7246  om0r  8538  kmlem11  10154  ituniiun  10416  dfrtrclrec2  15004  voliunlem1  25066  ofpreima2  31886  esum2dlem  33085  sigaclfu2  33114  measvunilem0  33206  measvuni  33207  cvmscld  34259  ovolval4lem1  45355
  Copyright terms: Public domain W3C validator