| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iun0 | Structured version Visualization version GIF version | ||
| Description: An indexed union of the empty set is empty. (Contributed by NM, 26-Mar-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
| Ref | Expression |
|---|---|
| iun0 | ⊢ ∪ 𝑥 ∈ 𝐴 ∅ = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | noel 4289 | . . . . 5 ⊢ ¬ 𝑦 ∈ ∅ | |
| 2 | 1 | a1i 11 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → ¬ 𝑦 ∈ ∅) |
| 3 | 2 | nrex 3057 | . . 3 ⊢ ¬ ∃𝑥 ∈ 𝐴 𝑦 ∈ ∅ |
| 4 | eliun 4945 | . . 3 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 ∅ ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ ∅) | |
| 5 | 3, 4 | mtbir 323 | . 2 ⊢ ¬ 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 ∅ |
| 6 | 5 | nel0 4305 | 1 ⊢ ∪ 𝑥 ∈ 𝐴 ∅ = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 ∅c0 4284 ∪ ciun 4941 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-v 3438 df-dif 3906 df-nul 4285 df-iun 4943 |
| This theorem is referenced by: iunxdif3 5044 iununi 5048 funiunfv 7184 om0r 8457 kmlem11 10055 ituniiun 10316 dfrtrclrec2 14965 voliunlem1 25449 ofpreima2 32617 ssdifidllem 33402 esum2dlem 34075 sigaclfu2 34104 measvunilem0 34196 measvuni 34197 cvmscld 35266 ovolval4lem1 46650 |
| Copyright terms: Public domain | W3C validator |