![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iun0 | Structured version Visualization version GIF version |
Description: An indexed union of the empty set is empty. (Contributed by NM, 26-Mar-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
Ref | Expression |
---|---|
iun0 | ⊢ ∪ 𝑥 ∈ 𝐴 ∅ = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noel 4360 | . . . . 5 ⊢ ¬ 𝑦 ∈ ∅ | |
2 | 1 | a1i 11 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → ¬ 𝑦 ∈ ∅) |
3 | 2 | nrex 3080 | . . 3 ⊢ ¬ ∃𝑥 ∈ 𝐴 𝑦 ∈ ∅ |
4 | eliun 5019 | . . 3 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 ∅ ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ ∅) | |
5 | 3, 4 | mtbir 323 | . 2 ⊢ ¬ 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 ∅ |
6 | 5 | nel0 4377 | 1 ⊢ ∪ 𝑥 ∈ 𝐴 ∅ = ∅ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1537 ∈ wcel 2108 ∃wrex 3076 ∅c0 4352 ∪ ciun 5015 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-v 3490 df-dif 3979 df-nul 4353 df-iun 5017 |
This theorem is referenced by: iunxdif3 5118 iununi 5122 funiunfv 7285 om0r 8595 kmlem11 10230 ituniiun 10491 dfrtrclrec2 15107 voliunlem1 25604 ofpreima2 32684 ssdifidllem 33449 esum2dlem 34056 sigaclfu2 34085 measvunilem0 34177 measvuni 34178 cvmscld 35241 ovolval4lem1 46570 |
Copyright terms: Public domain | W3C validator |