MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iun0 Structured version   Visualization version   GIF version

Theorem iun0 4995
Description: An indexed union of the empty set is empty. (Contributed by NM, 26-Mar-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
iun0 𝑥𝐴 ∅ = ∅

Proof of Theorem iun0
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 noel 4269 . . . . 5 ¬ 𝑦 ∈ ∅
21a1i 11 . . . 4 (𝑥𝐴 → ¬ 𝑦 ∈ ∅)
32nrex 3198 . . 3 ¬ ∃𝑥𝐴 𝑦 ∈ ∅
4 eliun 4933 . . 3 (𝑦 𝑥𝐴 ∅ ↔ ∃𝑥𝐴 𝑦 ∈ ∅)
53, 4mtbir 322 . 2 ¬ 𝑦 𝑥𝐴
65nel0 4289 1 𝑥𝐴 ∅ = ∅
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1541  wcel 2109  wrex 3066  c0 4261   ciun 4929
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-ext 2710
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1544  df-fal 1554  df-ex 1786  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-ral 3070  df-rex 3071  df-v 3432  df-dif 3894  df-nul 4262  df-iun 4931
This theorem is referenced by:  iunxdif3  5028  iununi  5032  funiunfv  7115  om0r  8345  trpred0  9462  kmlem11  9900  ituniiun  10162  dfrtrclrec2  14750  voliunlem1  24695  ofpreima2  30982  esum2dlem  32039  sigaclfu2  32068  measvunilem0  32160  measvuni  32161  cvmscld  33214  ovolval4lem1  44141
  Copyright terms: Public domain W3C validator