MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iun0 Structured version   Visualization version   GIF version

Theorem iun0 5008
Description: An indexed union of the empty set is empty. (Contributed by NM, 26-Mar-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
iun0 𝑥𝐴 ∅ = ∅

Proof of Theorem iun0
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 noel 4285 . . . . 5 ¬ 𝑦 ∈ ∅
21a1i 11 . . . 4 (𝑥𝐴 → ¬ 𝑦 ∈ ∅)
32nrex 3060 . . 3 ¬ ∃𝑥𝐴 𝑦 ∈ ∅
4 eliun 4943 . . 3 (𝑦 𝑥𝐴 ∅ ↔ ∃𝑥𝐴 𝑦 ∈ ∅)
53, 4mtbir 323 . 2 ¬ 𝑦 𝑥𝐴
65nel0 4301 1 𝑥𝐴 ∅ = ∅
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1541  wcel 2111  wrex 3056  c0 4280   ciun 4939
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-v 3438  df-dif 3900  df-nul 4281  df-iun 4941
This theorem is referenced by:  iunxdif3  5041  iununi  5045  funiunfv  7182  om0r  8454  kmlem11  10052  ituniiun  10313  dfrtrclrec2  14965  voliunlem1  25478  ofpreima2  32648  ssdifidllem  33421  esum2dlem  34105  sigaclfu2  34134  measvunilem0  34226  measvuni  34227  cvmscld  35317  ovolval4lem1  46746
  Copyright terms: Public domain W3C validator