| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0xp | Structured version Visualization version GIF version | ||
| Description: The Cartesian product with the empty set is empty. Part of Theorem 3.13(ii) of [Monk1] p. 37. (Contributed by NM, 4-Jul-1994.) |
| Ref | Expression |
|---|---|
| 0xp | ⊢ (∅ × 𝐴) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | noel 4288 | . . . . . 6 ⊢ ¬ 𝑥 ∈ ∅ | |
| 2 | simprl 770 | . . . . . 6 ⊢ ((𝑧 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ ∅ ∧ 𝑦 ∈ 𝐴)) → 𝑥 ∈ ∅) | |
| 3 | 1, 2 | mto 197 | . . . . 5 ⊢ ¬ (𝑧 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ ∅ ∧ 𝑦 ∈ 𝐴)) |
| 4 | 3 | nex 1801 | . . . 4 ⊢ ¬ ∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ ∅ ∧ 𝑦 ∈ 𝐴)) |
| 5 | 4 | nex 1801 | . . 3 ⊢ ¬ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ ∅ ∧ 𝑦 ∈ 𝐴)) |
| 6 | elxp 5639 | . . 3 ⊢ (𝑧 ∈ (∅ × 𝐴) ↔ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ ∅ ∧ 𝑦 ∈ 𝐴))) | |
| 7 | 5, 6 | mtbir 323 | . 2 ⊢ ¬ 𝑧 ∈ (∅ × 𝐴) |
| 8 | 7 | nel0 4304 | 1 ⊢ (∅ × 𝐴) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2111 ∅c0 4283 〈cop 4582 × cxp 5614 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-opab 5154 df-xp 5622 |
| This theorem is referenced by: dmxpid 5870 csbres 5931 res0 5932 xp0 6105 xpnz 6106 xpdisj1 6108 difxp2 6113 xpcan2 6124 xpima 6129 unixp 6229 unixpid 6231 xpcoid 6237 fodomr 9041 fodomfir 9212 iundom2g 10431 hashxplem 14340 dmtrclfv 14925 ramcl 16941 0subcat 17745 mat0dimbas0 22382 mavmul0g 22469 txindislem 23549 txhaus 23563 tmdgsum 24011 ust0 24136 ehl0 25345 mbf0 25563 fconst7v 32601 hashxpe 32787 gsumpart 33035 erlval 33223 fracbas 33269 sibf0 34345 lpadlem3 34689 mexval2 35545 poimirlem5 37671 poimirlem10 37676 poimirlem22 37688 poimirlem23 37689 poimirlem26 37692 poimirlem28 37694 0no 43474 0heALT 43822 dmrnxp 48874 0funcg2 49122 0funcALT 49126 |
| Copyright terms: Public domain | W3C validator |