| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0xp | Structured version Visualization version GIF version | ||
| Description: The Cartesian product with the empty set is empty. Part of Theorem 3.13(ii) of [Monk1] p. 37. (Contributed by NM, 4-Jul-1994.) |
| Ref | Expression |
|---|---|
| 0xp | ⊢ (∅ × 𝐴) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | noel 4291 | . . . . . 6 ⊢ ¬ 𝑥 ∈ ∅ | |
| 2 | simprl 770 | . . . . . 6 ⊢ ((𝑧 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ ∅ ∧ 𝑦 ∈ 𝐴)) → 𝑥 ∈ ∅) | |
| 3 | 1, 2 | mto 197 | . . . . 5 ⊢ ¬ (𝑧 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ ∅ ∧ 𝑦 ∈ 𝐴)) |
| 4 | 3 | nex 1800 | . . . 4 ⊢ ¬ ∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ ∅ ∧ 𝑦 ∈ 𝐴)) |
| 5 | 4 | nex 1800 | . . 3 ⊢ ¬ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ ∅ ∧ 𝑦 ∈ 𝐴)) |
| 6 | elxp 5646 | . . 3 ⊢ (𝑧 ∈ (∅ × 𝐴) ↔ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ ∅ ∧ 𝑦 ∈ 𝐴))) | |
| 7 | 5, 6 | mtbir 323 | . 2 ⊢ ¬ 𝑧 ∈ (∅ × 𝐴) |
| 8 | 7 | nel0 4307 | 1 ⊢ (∅ × 𝐴) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∅c0 4286 〈cop 4585 × cxp 5621 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-opab 5158 df-xp 5629 |
| This theorem is referenced by: dmxpid 5876 csbres 5937 res0 5938 xp0 6111 xpnz 6112 xpdisj1 6114 difxp2 6119 xpcan2 6130 xpima 6135 unixp 6234 unixpid 6236 xpcoid 6242 fodomr 9052 xpfiOLD 9228 fodomfir 9237 iundom2g 10453 hashxplem 14358 dmtrclfv 14943 ramcl 16959 0subcat 17763 mat0dimbas0 22369 mavmul0g 22456 txindislem 23536 txhaus 23550 tmdgsum 23998 ust0 24123 ehl0 25333 mbf0 25551 hashxpe 32765 gsumpart 33023 erlval 33211 fracbas 33257 sibf0 34304 lpadlem3 34648 mexval2 35478 poimirlem5 37607 poimirlem10 37612 poimirlem22 37624 poimirlem23 37625 poimirlem26 37628 poimirlem28 37630 0no 43411 0heALT 43759 dmrnxp 48825 0funcg2 49073 0funcALT 49077 |
| Copyright terms: Public domain | W3C validator |