| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0xp | Structured version Visualization version GIF version | ||
| Description: The Cartesian product with the empty set is empty. Part of Theorem 3.13(ii) of [Monk1] p. 37. (Contributed by NM, 4-Jul-1994.) |
| Ref | Expression |
|---|---|
| 0xp | ⊢ (∅ × 𝐴) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | noel 4313 | . . . . . 6 ⊢ ¬ 𝑥 ∈ ∅ | |
| 2 | simprl 770 | . . . . . 6 ⊢ ((𝑧 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ ∅ ∧ 𝑦 ∈ 𝐴)) → 𝑥 ∈ ∅) | |
| 3 | 1, 2 | mto 197 | . . . . 5 ⊢ ¬ (𝑧 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ ∅ ∧ 𝑦 ∈ 𝐴)) |
| 4 | 3 | nex 1800 | . . . 4 ⊢ ¬ ∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ ∅ ∧ 𝑦 ∈ 𝐴)) |
| 5 | 4 | nex 1800 | . . 3 ⊢ ¬ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ ∅ ∧ 𝑦 ∈ 𝐴)) |
| 6 | elxp 5677 | . . 3 ⊢ (𝑧 ∈ (∅ × 𝐴) ↔ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ ∅ ∧ 𝑦 ∈ 𝐴))) | |
| 7 | 5, 6 | mtbir 323 | . 2 ⊢ ¬ 𝑧 ∈ (∅ × 𝐴) |
| 8 | 7 | nel0 4329 | 1 ⊢ (∅ × 𝐴) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2108 ∅c0 4308 〈cop 4607 × cxp 5652 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-opab 5182 df-xp 5660 |
| This theorem is referenced by: dmxpid 5910 csbres 5969 res0 5970 xp0 6147 xpnz 6148 xpdisj1 6150 difxp2 6155 xpcan2 6166 xpima 6171 unixp 6271 unixpid 6273 xpcoid 6279 fodomr 9140 xpfiOLD 9329 fodomfir 9338 iundom2g 10552 hashxplem 14449 dmtrclfv 15035 ramcl 17047 0subcat 17849 mat0dimbas0 22402 mavmul0g 22489 txindislem 23569 txhaus 23583 tmdgsum 24031 ust0 24156 ehl0 25367 mbf0 25585 hashxpe 32732 gsumpart 32997 erlval 33199 fracbas 33245 sibf0 34312 lpadlem3 34656 mexval2 35471 poimirlem5 37595 poimirlem10 37600 poimirlem22 37612 poimirlem23 37613 poimirlem26 37616 poimirlem28 37618 0no 43406 0heALT 43754 dmrnxp 48763 0funcg2 48997 0funcALT 49001 |
| Copyright terms: Public domain | W3C validator |