MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0xp Structured version   Visualization version   GIF version

Theorem 0xp 5613
Description: The Cartesian product with the empty set is empty. Part of Theorem 3.13(ii) of [Monk1] p. 37. (Contributed by NM, 4-Jul-1994.)
Assertion
Ref Expression
0xp (∅ × 𝐴) = ∅

Proof of Theorem 0xp
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 noel 4247 . . . . . 6 ¬ 𝑥 ∈ ∅
2 simprl 770 . . . . . 6 ((𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ ∅ ∧ 𝑦𝐴)) → 𝑥 ∈ ∅)
31, 2mto 200 . . . . 5 ¬ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ ∅ ∧ 𝑦𝐴))
43nex 1802 . . . 4 ¬ ∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ ∅ ∧ 𝑦𝐴))
54nex 1802 . . 3 ¬ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ ∅ ∧ 𝑦𝐴))
6 elxp 5542 . . 3 (𝑧 ∈ (∅ × 𝐴) ↔ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ ∅ ∧ 𝑦𝐴)))
75, 6mtbir 326 . 2 ¬ 𝑧 ∈ (∅ × 𝐴)
87nel0 4264 1 (∅ × 𝐴) = ∅
Colors of variables: wff setvar class
Syntax hints:  wa 399   = wceq 1538  wex 1781  wcel 2111  c0 4243  cop 4531   × cxp 5517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-v 3443  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-opab 5093  df-xp 5525
This theorem is referenced by:  dmxpid  5764  csbres  5821  res0  5822  xp0  5982  xpnz  5983  xpdisj1  5985  difxp2  5990  xpcan2  6001  xpima  6006  unixp  6101  unixpid  6103  xpcoid  6109  fodomr  8652  xpfi  8773  iundom2g  9951  hashxplem  13790  dmtrclfv  14369  ramcl  16355  0subcat  17100  mat0dimbas0  21071  mavmul0g  21158  txindislem  22238  txhaus  22252  tmdgsum  22700  ust0  22825  ehl0  24021  mbf0  24238  hashxpe  30555  gsumpart  30740  sibf0  31702  lpadlem3  32059  mexval2  32863  poimirlem5  35062  poimirlem10  35067  poimirlem22  35079  poimirlem23  35080  poimirlem26  35083  poimirlem28  35085  0heALT  40484
  Copyright terms: Public domain W3C validator