Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 0xp | Structured version Visualization version GIF version |
Description: The Cartesian product with the empty set is empty. Part of Theorem 3.13(ii) of [Monk1] p. 37. (Contributed by NM, 4-Jul-1994.) |
Ref | Expression |
---|---|
0xp | ⊢ (∅ × 𝐴) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noel 4261 | . . . . . 6 ⊢ ¬ 𝑥 ∈ ∅ | |
2 | simprl 767 | . . . . . 6 ⊢ ((𝑧 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ ∅ ∧ 𝑦 ∈ 𝐴)) → 𝑥 ∈ ∅) | |
3 | 1, 2 | mto 196 | . . . . 5 ⊢ ¬ (𝑧 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ ∅ ∧ 𝑦 ∈ 𝐴)) |
4 | 3 | nex 1804 | . . . 4 ⊢ ¬ ∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ ∅ ∧ 𝑦 ∈ 𝐴)) |
5 | 4 | nex 1804 | . . 3 ⊢ ¬ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ ∅ ∧ 𝑦 ∈ 𝐴)) |
6 | elxp 5603 | . . 3 ⊢ (𝑧 ∈ (∅ × 𝐴) ↔ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ ∅ ∧ 𝑦 ∈ 𝐴))) | |
7 | 5, 6 | mtbir 322 | . 2 ⊢ ¬ 𝑧 ∈ (∅ × 𝐴) |
8 | 7 | nel0 4281 | 1 ⊢ (∅ × 𝐴) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1539 ∃wex 1783 ∈ wcel 2108 ∅c0 4253 〈cop 4564 × cxp 5578 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-dif 3886 df-un 3888 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-opab 5133 df-xp 5586 |
This theorem is referenced by: dmxpid 5828 csbres 5883 res0 5884 xp0 6050 xpnz 6051 xpdisj1 6053 difxp2 6058 xpcan2 6069 xpima 6074 unixp 6174 unixpid 6176 xpcoid 6182 fodomr 8864 xpfi 9015 iundom2g 10227 hashxplem 14076 dmtrclfv 14657 ramcl 16658 0subcat 17469 mat0dimbas0 21523 mavmul0g 21610 txindislem 22692 txhaus 22706 tmdgsum 23154 ust0 23279 ehl0 24486 mbf0 24703 hashxpe 31029 gsumpart 31217 sibf0 32201 lpadlem3 32558 mexval2 33365 poimirlem5 35709 poimirlem10 35714 poimirlem22 35726 poimirlem23 35727 poimirlem26 35730 poimirlem28 35732 0heALT 41280 |
Copyright terms: Public domain | W3C validator |