![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0xp | Structured version Visualization version GIF version |
Description: The Cartesian product with the empty set is empty. Part of Theorem 3.13(ii) of [Monk1] p. 37. (Contributed by NM, 4-Jul-1994.) |
Ref | Expression |
---|---|
0xp | ⊢ (∅ × 𝐴) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noel 4150 | . . . . . 6 ⊢ ¬ 𝑥 ∈ ∅ | |
2 | simprl 787 | . . . . . 6 ⊢ ((𝑧 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ ∅ ∧ 𝑦 ∈ 𝐴)) → 𝑥 ∈ ∅) | |
3 | 1, 2 | mto 189 | . . . . 5 ⊢ ¬ (𝑧 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ ∅ ∧ 𝑦 ∈ 𝐴)) |
4 | 3 | nex 1899 | . . . 4 ⊢ ¬ ∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ ∅ ∧ 𝑦 ∈ 𝐴)) |
5 | 4 | nex 1899 | . . 3 ⊢ ¬ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ ∅ ∧ 𝑦 ∈ 𝐴)) |
6 | elxp 5369 | . . 3 ⊢ (𝑧 ∈ (∅ × 𝐴) ↔ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ ∅ ∧ 𝑦 ∈ 𝐴))) | |
7 | 5, 6 | mtbir 315 | . 2 ⊢ ¬ 𝑧 ∈ (∅ × 𝐴) |
8 | 7 | nel0 4163 | 1 ⊢ (∅ × 𝐴) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 386 = wceq 1656 ∃wex 1878 ∈ wcel 2164 ∅c0 4146 〈cop 4405 × cxp 5344 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-sep 5007 ax-nul 5015 ax-pr 5129 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-v 3416 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4147 df-if 4309 df-sn 4400 df-pr 4402 df-op 4406 df-opab 4938 df-xp 5352 |
This theorem is referenced by: dmxpid 5581 csbres 5636 res0 5637 xp0 5797 xpnz 5798 xpdisj1 5800 difxp2 5805 xpcan2 5816 xpima 5821 unixp 5913 unixpid 5915 xpcoid 5921 fodomr 8386 xpfi 8506 cdaassen 9326 iundom2g 9684 alephadd 9721 hashxplem 13516 dmtrclfv 14143 ramcl 16111 0subcat 16857 mat0dimbas0 20647 mavmul0g 20734 txindislem 21814 txhaus 21828 tmdgsum 22276 ust0 22400 ehl0 23592 mbf0 23807 sibf0 30937 mexval2 31942 poimirlem5 33957 poimirlem10 33962 poimirlem22 33974 poimirlem23 33975 poimirlem26 33978 poimirlem28 33980 0heALT 38916 |
Copyright terms: Public domain | W3C validator |