MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0xp Structured version   Visualization version   GIF version

Theorem 0xp 5786
Description: The Cartesian product with the empty set is empty. Part of Theorem 3.13(ii) of [Monk1] p. 37. (Contributed by NM, 4-Jul-1994.)
Assertion
Ref Expression
0xp (∅ × 𝐴) = ∅

Proof of Theorem 0xp
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 noel 4343 . . . . . 6 ¬ 𝑥 ∈ ∅
2 simprl 771 . . . . . 6 ((𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ ∅ ∧ 𝑦𝐴)) → 𝑥 ∈ ∅)
31, 2mto 197 . . . . 5 ¬ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ ∅ ∧ 𝑦𝐴))
43nex 1796 . . . 4 ¬ ∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ ∅ ∧ 𝑦𝐴))
54nex 1796 . . 3 ¬ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ ∅ ∧ 𝑦𝐴))
6 elxp 5711 . . 3 (𝑧 ∈ (∅ × 𝐴) ↔ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ ∅ ∧ 𝑦𝐴)))
75, 6mtbir 323 . 2 ¬ 𝑧 ∈ (∅ × 𝐴)
87nel0 4359 1 (∅ × 𝐴) = ∅
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1536  wex 1775  wcel 2105  c0 4338  cop 4636   × cxp 5686
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pr 5437
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-sb 2062  df-clab 2712  df-cleq 2726  df-clel 2813  df-v 3479  df-dif 3965  df-un 3967  df-ss 3979  df-nul 4339  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-opab 5210  df-xp 5694
This theorem is referenced by:  dmxpid  5943  csbres  6002  res0  6003  xp0  6179  xpnz  6180  xpdisj1  6182  difxp2  6187  xpcan2  6198  xpima  6203  unixp  6303  unixpid  6305  xpcoid  6311  fodomr  9166  xpfiOLD  9356  fodomfir  9365  iundom2g  10577  hashxplem  14468  dmtrclfv  15053  ramcl  17062  0subcat  17888  mat0dimbas0  22487  mavmul0g  22574  txindislem  23656  txhaus  23670  tmdgsum  24118  ust0  24243  ehl0  25464  mbf0  25682  hashxpe  32816  gsumpart  33042  erlval  33244  fracbas  33286  sibf0  34315  lpadlem3  34671  mexval2  35487  poimirlem5  37611  poimirlem10  37616  poimirlem22  37628  poimirlem23  37629  poimirlem26  37632  poimirlem28  37634  0no  43424  0heALT  43772
  Copyright terms: Public domain W3C validator