![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0xp | Structured version Visualization version GIF version |
Description: The Cartesian product with the empty set is empty. Part of Theorem 3.13(ii) of [Monk1] p. 37. (Contributed by NM, 4-Jul-1994.) |
Ref | Expression |
---|---|
0xp | ⊢ (∅ × 𝐴) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noel 4329 | . . . . . 6 ⊢ ¬ 𝑥 ∈ ∅ | |
2 | simprl 769 | . . . . . 6 ⊢ ((𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ ∅ ∧ 𝑦 ∈ 𝐴)) → 𝑥 ∈ ∅) | |
3 | 1, 2 | mto 196 | . . . . 5 ⊢ ¬ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ ∅ ∧ 𝑦 ∈ 𝐴)) |
4 | 3 | nex 1802 | . . . 4 ⊢ ¬ ∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ ∅ ∧ 𝑦 ∈ 𝐴)) |
5 | 4 | nex 1802 | . . 3 ⊢ ¬ ∃𝑥∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ ∅ ∧ 𝑦 ∈ 𝐴)) |
6 | elxp 5698 | . . 3 ⊢ (𝑧 ∈ (∅ × 𝐴) ↔ ∃𝑥∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ ∅ ∧ 𝑦 ∈ 𝐴))) | |
7 | 5, 6 | mtbir 322 | . 2 ⊢ ¬ 𝑧 ∈ (∅ × 𝐴) |
8 | 7 | nel0 4349 | 1 ⊢ (∅ × 𝐴) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 = wceq 1541 ∃wex 1781 ∈ wcel 2106 ∅c0 4321 ⟨cop 4633 × cxp 5673 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-opab 5210 df-xp 5681 |
This theorem is referenced by: dmxpid 5927 csbres 5982 res0 5983 xp0 6154 xpnz 6155 xpdisj1 6157 difxp2 6162 xpcan2 6173 xpima 6178 unixp 6278 unixpid 6280 xpcoid 6286 fodomr 9124 xpfiOLD 9314 iundom2g 10531 hashxplem 14389 dmtrclfv 14961 ramcl 16958 0subcat 17784 mat0dimbas0 21959 mavmul0g 22046 txindislem 23128 txhaus 23142 tmdgsum 23590 ust0 23715 ehl0 24925 mbf0 25142 hashxpe 32006 gsumpart 32194 sibf0 33321 lpadlem3 33678 mexval2 34482 poimirlem5 36481 poimirlem10 36486 poimirlem22 36498 poimirlem23 36499 poimirlem26 36502 poimirlem28 36504 0no 42171 0heALT 42519 |
Copyright terms: Public domain | W3C validator |