MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0xp Structured version   Visualization version   GIF version

Theorem 0xp 5675
Description: The Cartesian product with the empty set is empty. Part of Theorem 3.13(ii) of [Monk1] p. 37. (Contributed by NM, 4-Jul-1994.)
Assertion
Ref Expression
0xp (∅ × 𝐴) = ∅

Proof of Theorem 0xp
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 noel 4261 . . . . . 6 ¬ 𝑥 ∈ ∅
2 simprl 767 . . . . . 6 ((𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ ∅ ∧ 𝑦𝐴)) → 𝑥 ∈ ∅)
31, 2mto 196 . . . . 5 ¬ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ ∅ ∧ 𝑦𝐴))
43nex 1804 . . . 4 ¬ ∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ ∅ ∧ 𝑦𝐴))
54nex 1804 . . 3 ¬ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ ∅ ∧ 𝑦𝐴))
6 elxp 5603 . . 3 (𝑧 ∈ (∅ × 𝐴) ↔ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ ∅ ∧ 𝑦𝐴)))
75, 6mtbir 322 . 2 ¬ 𝑧 ∈ (∅ × 𝐴)
87nel0 4281 1 (∅ × 𝐴) = ∅
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1539  wex 1783  wcel 2108  c0 4253  cop 4564   × cxp 5578
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-dif 3886  df-un 3888  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-opab 5133  df-xp 5586
This theorem is referenced by:  dmxpid  5828  csbres  5883  res0  5884  xp0  6050  xpnz  6051  xpdisj1  6053  difxp2  6058  xpcan2  6069  xpima  6074  unixp  6174  unixpid  6176  xpcoid  6182  fodomr  8864  xpfi  9015  iundom2g  10227  hashxplem  14076  dmtrclfv  14657  ramcl  16658  0subcat  17469  mat0dimbas0  21523  mavmul0g  21610  txindislem  22692  txhaus  22706  tmdgsum  23154  ust0  23279  ehl0  24486  mbf0  24703  hashxpe  31029  gsumpart  31217  sibf0  32201  lpadlem3  32558  mexval2  33365  poimirlem5  35709  poimirlem10  35714  poimirlem22  35726  poimirlem23  35727  poimirlem26  35730  poimirlem28  35732  0heALT  41280
  Copyright terms: Public domain W3C validator