| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0xp | Structured version Visualization version GIF version | ||
| Description: The Cartesian product with the empty set is empty. Part of Theorem 3.13(ii) of [Monk1] p. 37. (Contributed by NM, 4-Jul-1994.) |
| Ref | Expression |
|---|---|
| 0xp | ⊢ (∅ × 𝐴) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | noel 4287 | . . . . . 6 ⊢ ¬ 𝑥 ∈ ∅ | |
| 2 | simprl 770 | . . . . . 6 ⊢ ((𝑧 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ ∅ ∧ 𝑦 ∈ 𝐴)) → 𝑥 ∈ ∅) | |
| 3 | 1, 2 | mto 197 | . . . . 5 ⊢ ¬ (𝑧 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ ∅ ∧ 𝑦 ∈ 𝐴)) |
| 4 | 3 | nex 1801 | . . . 4 ⊢ ¬ ∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ ∅ ∧ 𝑦 ∈ 𝐴)) |
| 5 | 4 | nex 1801 | . . 3 ⊢ ¬ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ ∅ ∧ 𝑦 ∈ 𝐴)) |
| 6 | elxpi 5643 | . . 3 ⊢ (𝑧 ∈ (∅ × 𝐴) → ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ ∅ ∧ 𝑦 ∈ 𝐴))) | |
| 7 | 5, 6 | mto 197 | . 2 ⊢ ¬ 𝑧 ∈ (∅ × 𝐴) |
| 8 | 7 | nel0 4303 | 1 ⊢ (∅ × 𝐴) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2113 ∅c0 4282 〈cop 4583 × cxp 5619 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-dif 3901 df-nul 4283 df-opab 5158 df-xp 5627 |
| This theorem is referenced by: dmxpid 5876 csbres 5937 res0 5938 xp0OLD 6112 xpnz 6113 xpdisj1 6115 difxp2 6120 xpcan2 6131 xpima 6136 unixp 6236 unixpid 6238 xpcoid 6244 fodomr 9050 fodomfir 9221 iundom2g 10440 hashxplem 14344 dmtrclfv 14929 ramcl 16945 0subcat 17749 mat0dimbas0 22384 mavmul0g 22471 txindislem 23551 txhaus 23565 tmdgsum 24013 ust0 24138 ehl0 25347 mbf0 25565 fconst7v 32607 hashxpe 32796 indconst0 32848 indconst1 32849 gsumpart 33046 erlval 33234 fracbas 33280 sibf0 34370 lpadlem3 34714 mexval2 35570 poimirlem5 37688 poimirlem10 37693 poimirlem22 37705 poimirlem23 37706 poimirlem26 37709 poimirlem28 37711 0no 43555 0heALT 43903 dmrnxp 48964 0funcg2 49212 0funcALT 49216 |
| Copyright terms: Public domain | W3C validator |