Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 0xp | Structured version Visualization version GIF version |
Description: The Cartesian product with the empty set is empty. Part of Theorem 3.13(ii) of [Monk1] p. 37. (Contributed by NM, 4-Jul-1994.) |
Ref | Expression |
---|---|
0xp | ⊢ (∅ × 𝐴) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noel 4231 | . . . . . 6 ⊢ ¬ 𝑥 ∈ ∅ | |
2 | simprl 771 | . . . . . 6 ⊢ ((𝑧 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ ∅ ∧ 𝑦 ∈ 𝐴)) → 𝑥 ∈ ∅) | |
3 | 1, 2 | mto 200 | . . . . 5 ⊢ ¬ (𝑧 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ ∅ ∧ 𝑦 ∈ 𝐴)) |
4 | 3 | nex 1803 | . . . 4 ⊢ ¬ ∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ ∅ ∧ 𝑦 ∈ 𝐴)) |
5 | 4 | nex 1803 | . . 3 ⊢ ¬ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ ∅ ∧ 𝑦 ∈ 𝐴)) |
6 | elxp 5548 | . . 3 ⊢ (𝑧 ∈ (∅ × 𝐴) ↔ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ ∅ ∧ 𝑦 ∈ 𝐴))) | |
7 | 5, 6 | mtbir 327 | . 2 ⊢ ¬ 𝑧 ∈ (∅ × 𝐴) |
8 | 7 | nel0 4250 | 1 ⊢ (∅ × 𝐴) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 400 = wceq 1539 ∃wex 1782 ∈ wcel 2112 ∅c0 4226 〈cop 4529 × cxp 5523 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-ext 2730 ax-sep 5170 ax-nul 5177 ax-pr 5299 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2071 df-clab 2737 df-cleq 2751 df-clel 2831 df-v 3412 df-dif 3862 df-un 3864 df-nul 4227 df-if 4422 df-sn 4524 df-pr 4526 df-op 4530 df-opab 5096 df-xp 5531 |
This theorem is referenced by: dmxpid 5772 csbres 5827 res0 5828 xp0 5988 xpnz 5989 xpdisj1 5991 difxp2 5996 xpcan2 6007 xpima 6012 unixp 6112 unixpid 6114 xpcoid 6120 fodomr 8691 xpfi 8823 iundom2g 10001 hashxplem 13845 dmtrclfv 14426 ramcl 16421 0subcat 17168 mat0dimbas0 21167 mavmul0g 21254 txindislem 22334 txhaus 22348 tmdgsum 22796 ust0 22921 ehl0 24118 mbf0 24335 hashxpe 30652 gsumpart 30842 sibf0 31821 lpadlem3 32178 mexval2 32982 poimirlem5 35343 poimirlem10 35348 poimirlem22 35360 poimirlem23 35361 poimirlem26 35364 poimirlem28 35366 0heALT 40858 |
Copyright terms: Public domain | W3C validator |