| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > en2lp | Structured version Visualization version GIF version | ||
| Description: No class has 2-cycle membership loops. Theorem 7X(b) of [Enderton] p. 206. (Contributed by NM, 16-Oct-1996.) (Revised by Mario Carneiro, 25-Jun-2015.) |
| Ref | Expression |
|---|---|
| en2lp | ⊢ ¬ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zfregfr 9501 | . . 3 ⊢ E Fr V | |
| 2 | efrn2lp 5600 | . . 3 ⊢ (( E Fr V ∧ (𝐴 ∈ V ∧ 𝐵 ∈ V)) → ¬ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐴)) | |
| 3 | 1, 2 | mpan 690 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ¬ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐴)) |
| 4 | elex 3458 | . . . 4 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ V) | |
| 5 | elex 3458 | . . . 4 ⊢ (𝐵 ∈ 𝐴 → 𝐵 ∈ V) | |
| 6 | 4, 5 | anim12i 613 | . . 3 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐴) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
| 7 | 6 | con3i 154 | . 2 ⊢ (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → ¬ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐴)) |
| 8 | 3, 7 | pm2.61i 182 | 1 ⊢ ¬ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 ∈ wcel 2113 Vcvv 3437 E cep 5518 Fr wfr 5569 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 ax-reg 9485 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-br 5094 df-opab 5156 df-eprel 5519 df-fr 5572 |
| This theorem is referenced by: elnanel 9504 cnvepnep 9505 elnotel 9507 preleqALT 9514 suc11reg 9516 axunndlem1 10493 axacndlem5 10509 bj-nsnid 37135 tratrb 44653 tratrbVD 44977 |
| Copyright terms: Public domain | W3C validator |