Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > en2lp | Structured version Visualization version GIF version |
Description: No class has 2-cycle membership loops. Theorem 7X(b) of [Enderton] p. 206. (Contributed by NM, 16-Oct-1996.) (Revised by Mario Carneiro, 25-Jun-2015.) |
Ref | Expression |
---|---|
en2lp | ⊢ ¬ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zfregfr 9293 | . . 3 ⊢ E Fr V | |
2 | efrn2lp 5562 | . . 3 ⊢ (( E Fr V ∧ (𝐴 ∈ V ∧ 𝐵 ∈ V)) → ¬ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐴)) | |
3 | 1, 2 | mpan 686 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ¬ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐴)) |
4 | elex 3440 | . . . 4 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ V) | |
5 | elex 3440 | . . . 4 ⊢ (𝐵 ∈ 𝐴 → 𝐵 ∈ V) | |
6 | 4, 5 | anim12i 612 | . . 3 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐴) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
7 | 6 | con3i 154 | . 2 ⊢ (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → ¬ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐴)) |
8 | 3, 7 | pm2.61i 182 | 1 ⊢ ¬ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 395 ∈ wcel 2108 Vcvv 3422 E cep 5485 Fr wfr 5532 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-reg 9281 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-eprel 5486 df-fr 5535 |
This theorem is referenced by: elnanel 9295 cnvepnep 9296 elnotel 9298 preleqALT 9305 suc11reg 9307 axunndlem1 10282 axacndlem5 10298 bj-nsnid 35168 tratrb 42045 tratrbVD 42370 |
Copyright terms: Public domain | W3C validator |