MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  en2lp Structured version   Visualization version   GIF version

Theorem en2lp 9057
Description: No class has 2-cycle membership loops. Theorem 7X(b) of [Enderton] p. 206. (Contributed by NM, 16-Oct-1996.) (Revised by Mario Carneiro, 25-Jun-2015.)
Assertion
Ref Expression
en2lp ¬ (𝐴𝐵𝐵𝐴)

Proof of Theorem en2lp
StepHypRef Expression
1 zfregfr 9056 . . 3 E Fr V
2 efrn2lp 5514 . . 3 (( E Fr V ∧ (𝐴 ∈ V ∧ 𝐵 ∈ V)) → ¬ (𝐴𝐵𝐵𝐴))
31, 2mpan 689 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ¬ (𝐴𝐵𝐵𝐴))
4 elex 3487 . . . 4 (𝐴𝐵𝐴 ∈ V)
5 elex 3487 . . . 4 (𝐵𝐴𝐵 ∈ V)
64, 5anim12i 615 . . 3 ((𝐴𝐵𝐵𝐴) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
76con3i 157 . 2 (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → ¬ (𝐴𝐵𝐵𝐴))
83, 7pm2.61i 185 1 ¬ (𝐴𝐵𝐵𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 399  wcel 2114  Vcvv 3469   E cep 5441   Fr wfr 5488
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-sep 5179  ax-nul 5186  ax-pr 5307  ax-reg 9044
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-ral 3135  df-rex 3136  df-rab 3139  df-v 3471  df-sbc 3748  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-nul 4266  df-if 4440  df-sn 4540  df-pr 4542  df-op 4546  df-br 5043  df-opab 5105  df-eprel 5442  df-fr 5491
This theorem is referenced by:  elnanel  9058  cnvepnep  9059  elnotel  9061  preleqALT  9068  suc11reg  9070  axunndlem1  10006  axacndlem5  10022  bj-nsnid  34447  tratrb  41176  tratrbVD  41501
  Copyright terms: Public domain W3C validator