Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > en2lp | Structured version Visualization version GIF version |
Description: No class has 2-cycle membership loops. Theorem 7X(b) of [Enderton] p. 206. (Contributed by NM, 16-Oct-1996.) (Revised by Mario Carneiro, 25-Jun-2015.) |
Ref | Expression |
---|---|
en2lp | ⊢ ¬ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zfregfr 9363 | . . 3 ⊢ E Fr V | |
2 | efrn2lp 5571 | . . 3 ⊢ (( E Fr V ∧ (𝐴 ∈ V ∧ 𝐵 ∈ V)) → ¬ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐴)) | |
3 | 1, 2 | mpan 687 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ¬ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐴)) |
4 | elex 3450 | . . . 4 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ V) | |
5 | elex 3450 | . . . 4 ⊢ (𝐵 ∈ 𝐴 → 𝐵 ∈ V) | |
6 | 4, 5 | anim12i 613 | . . 3 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐴) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
7 | 6 | con3i 154 | . 2 ⊢ (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → ¬ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐴)) |
8 | 3, 7 | pm2.61i 182 | 1 ⊢ ¬ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 396 ∈ wcel 2106 Vcvv 3432 E cep 5494 Fr wfr 5541 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-reg 9351 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-eprel 5495 df-fr 5544 |
This theorem is referenced by: elnanel 9365 cnvepnep 9366 elnotel 9368 preleqALT 9375 suc11reg 9377 axunndlem1 10351 axacndlem5 10367 bj-nsnid 35241 tratrb 42156 tratrbVD 42481 |
Copyright terms: Public domain | W3C validator |