MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  en2lp Structured version   Visualization version   GIF version

Theorem en2lp 9646
Description: No class has 2-cycle membership loops. Theorem 7X(b) of [Enderton] p. 206. (Contributed by NM, 16-Oct-1996.) (Revised by Mario Carneiro, 25-Jun-2015.)
Assertion
Ref Expression
en2lp ¬ (𝐴𝐵𝐵𝐴)

Proof of Theorem en2lp
StepHypRef Expression
1 zfregfr 9645 . . 3 E Fr V
2 efrn2lp 5666 . . 3 (( E Fr V ∧ (𝐴 ∈ V ∧ 𝐵 ∈ V)) → ¬ (𝐴𝐵𝐵𝐴))
31, 2mpan 690 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ¬ (𝐴𝐵𝐵𝐴))
4 elex 3501 . . . 4 (𝐴𝐵𝐴 ∈ V)
5 elex 3501 . . . 4 (𝐵𝐴𝐵 ∈ V)
64, 5anim12i 613 . . 3 ((𝐴𝐵𝐵𝐴) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
76con3i 154 . 2 (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → ¬ (𝐴𝐵𝐵𝐴))
83, 7pm2.61i 182 1 ¬ (𝐴𝐵𝐵𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395  wcel 2108  Vcvv 3480   E cep 5583   Fr wfr 5634
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432  ax-reg 9632
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-br 5144  df-opab 5206  df-eprel 5584  df-fr 5637
This theorem is referenced by:  elnanel  9647  cnvepnep  9648  elnotel  9650  preleqALT  9657  suc11reg  9659  axunndlem1  10635  axacndlem5  10651  bj-nsnid  37071  tratrb  44556  tratrbVD  44881
  Copyright terms: Public domain W3C validator