MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elnotel Structured version   Visualization version   GIF version

Theorem elnotel 8789
Description: A class cannot be an element of one of its elements. (Contributed by AV, 14-Jun-2022.)
Assertion
Ref Expression
elnotel (𝐴𝐵 → ¬ 𝐵𝐴)

Proof of Theorem elnotel
StepHypRef Expression
1 en2lp 8786 . 2 ¬ (𝐴𝐵𝐵𝐴)
21imnani 391 1 (𝐴𝐵 → ¬ 𝐵𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wcel 2164
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-sep 5007  ax-nul 5015  ax-pr 5129  ax-reg 8773
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-ral 3122  df-rex 3123  df-rab 3126  df-v 3416  df-sbc 3663  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4147  df-if 4309  df-sn 4400  df-pr 4402  df-op 4406  df-br 4876  df-opab 4938  df-eprel 5257  df-fr 5305
This theorem is referenced by:  elnel  8790  preleqg  8794
  Copyright terms: Public domain W3C validator