MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elnotel Structured version   Visualization version   GIF version

Theorem elnotel 9624
Description: A class cannot be an element of one of its elements. (Contributed by AV, 14-Jun-2022.)
Assertion
Ref Expression
elnotel (𝐴𝐵 → ¬ 𝐵𝐴)

Proof of Theorem elnotel
StepHypRef Expression
1 en2lp 9620 . 2 ¬ (𝐴𝐵𝐵𝐴)
21imnani 400 1 (𝐴𝐵 → ¬ 𝐵𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wcel 2108
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-reg 9606
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-br 5120  df-opab 5182  df-eprel 5553  df-fr 5606
This theorem is referenced by:  elnel  9625  preleqg  9629  mnurndlem1  44305
  Copyright terms: Public domain W3C validator