MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elnotel Structured version   Visualization version   GIF version

Theorem elnotel 9570
Description: A class cannot be an element of one of its elements. (Contributed by AV, 14-Jun-2022.)
Assertion
Ref Expression
elnotel (𝐴𝐵 → ¬ 𝐵𝐴)

Proof of Theorem elnotel
StepHypRef Expression
1 en2lp 9566 . 2 ¬ (𝐴𝐵𝐵𝐴)
21imnani 400 1 (𝐴𝐵 → ¬ 𝐵𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wcel 2109
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-reg 9552
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-eprel 5541  df-fr 5594
This theorem is referenced by:  elnel  9571  preleqg  9575  mnurndlem1  44277
  Copyright terms: Public domain W3C validator