| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ex-res | Structured version Visualization version GIF version | ||
| Description: Example for df-res 5671. Example by David A. Wheeler. (Contributed by Mario Carneiro, 7-May-2015.) |
| Ref | Expression |
|---|---|
| ex-res | ⊢ ((𝐹 = {〈2, 6〉, 〈3, 9〉} ∧ 𝐵 = {1, 2}) → (𝐹 ↾ 𝐵) = {〈2, 6〉}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . . . 5 ⊢ ((𝐹 = {〈2, 6〉, 〈3, 9〉} ∧ 𝐵 = {1, 2}) → 𝐹 = {〈2, 6〉, 〈3, 9〉}) | |
| 2 | df-pr 4609 | . . . . 5 ⊢ {〈2, 6〉, 〈3, 9〉} = ({〈2, 6〉} ∪ {〈3, 9〉}) | |
| 3 | 1, 2 | eqtrdi 2787 | . . . 4 ⊢ ((𝐹 = {〈2, 6〉, 〈3, 9〉} ∧ 𝐵 = {1, 2}) → 𝐹 = ({〈2, 6〉} ∪ {〈3, 9〉})) |
| 4 | 3 | reseq1d 5970 | . . 3 ⊢ ((𝐹 = {〈2, 6〉, 〈3, 9〉} ∧ 𝐵 = {1, 2}) → (𝐹 ↾ 𝐵) = (({〈2, 6〉} ∪ {〈3, 9〉}) ↾ 𝐵)) |
| 5 | resundir 5986 | . . 3 ⊢ (({〈2, 6〉} ∪ {〈3, 9〉}) ↾ 𝐵) = (({〈2, 6〉} ↾ 𝐵) ∪ ({〈3, 9〉} ↾ 𝐵)) | |
| 6 | 4, 5 | eqtrdi 2787 | . 2 ⊢ ((𝐹 = {〈2, 6〉, 〈3, 9〉} ∧ 𝐵 = {1, 2}) → (𝐹 ↾ 𝐵) = (({〈2, 6〉} ↾ 𝐵) ∪ ({〈3, 9〉} ↾ 𝐵))) |
| 7 | 2re 12319 | . . . . . . 7 ⊢ 2 ∈ ℝ | |
| 8 | 7 | elexi 3487 | . . . . . 6 ⊢ 2 ∈ V |
| 9 | 6re 12335 | . . . . . . 7 ⊢ 6 ∈ ℝ | |
| 10 | 9 | elexi 3487 | . . . . . 6 ⊢ 6 ∈ V |
| 11 | 8, 10 | relsnop 5789 | . . . . 5 ⊢ Rel {〈2, 6〉} |
| 12 | dmsnopss 6208 | . . . . . 6 ⊢ dom {〈2, 6〉} ⊆ {2} | |
| 13 | snsspr2 4796 | . . . . . . 7 ⊢ {2} ⊆ {1, 2} | |
| 14 | simpr 484 | . . . . . . 7 ⊢ ((𝐹 = {〈2, 6〉, 〈3, 9〉} ∧ 𝐵 = {1, 2}) → 𝐵 = {1, 2}) | |
| 15 | 13, 14 | sseqtrrid 4007 | . . . . . 6 ⊢ ((𝐹 = {〈2, 6〉, 〈3, 9〉} ∧ 𝐵 = {1, 2}) → {2} ⊆ 𝐵) |
| 16 | 12, 15 | sstrid 3975 | . . . . 5 ⊢ ((𝐹 = {〈2, 6〉, 〈3, 9〉} ∧ 𝐵 = {1, 2}) → dom {〈2, 6〉} ⊆ 𝐵) |
| 17 | relssres 6014 | . . . . 5 ⊢ ((Rel {〈2, 6〉} ∧ dom {〈2, 6〉} ⊆ 𝐵) → ({〈2, 6〉} ↾ 𝐵) = {〈2, 6〉}) | |
| 18 | 11, 16, 17 | sylancr 587 | . . . 4 ⊢ ((𝐹 = {〈2, 6〉, 〈3, 9〉} ∧ 𝐵 = {1, 2}) → ({〈2, 6〉} ↾ 𝐵) = {〈2, 6〉}) |
| 19 | 1re 11240 | . . . . . . . 8 ⊢ 1 ∈ ℝ | |
| 20 | 1lt3 12418 | . . . . . . . 8 ⊢ 1 < 3 | |
| 21 | 19, 20 | gtneii 11352 | . . . . . . 7 ⊢ 3 ≠ 1 |
| 22 | 2lt3 12417 | . . . . . . . 8 ⊢ 2 < 3 | |
| 23 | 7, 22 | gtneii 11352 | . . . . . . 7 ⊢ 3 ≠ 2 |
| 24 | 21, 23 | nelpri 4636 | . . . . . 6 ⊢ ¬ 3 ∈ {1, 2} |
| 25 | 14 | eleq2d 2821 | . . . . . 6 ⊢ ((𝐹 = {〈2, 6〉, 〈3, 9〉} ∧ 𝐵 = {1, 2}) → (3 ∈ 𝐵 ↔ 3 ∈ {1, 2})) |
| 26 | 24, 25 | mtbiri 327 | . . . . 5 ⊢ ((𝐹 = {〈2, 6〉, 〈3, 9〉} ∧ 𝐵 = {1, 2}) → ¬ 3 ∈ 𝐵) |
| 27 | ressnop0 7148 | . . . . 5 ⊢ (¬ 3 ∈ 𝐵 → ({〈3, 9〉} ↾ 𝐵) = ∅) | |
| 28 | 26, 27 | syl 17 | . . . 4 ⊢ ((𝐹 = {〈2, 6〉, 〈3, 9〉} ∧ 𝐵 = {1, 2}) → ({〈3, 9〉} ↾ 𝐵) = ∅) |
| 29 | 18, 28 | uneq12d 4149 | . . 3 ⊢ ((𝐹 = {〈2, 6〉, 〈3, 9〉} ∧ 𝐵 = {1, 2}) → (({〈2, 6〉} ↾ 𝐵) ∪ ({〈3, 9〉} ↾ 𝐵)) = ({〈2, 6〉} ∪ ∅)) |
| 30 | un0 4374 | . . 3 ⊢ ({〈2, 6〉} ∪ ∅) = {〈2, 6〉} | |
| 31 | 29, 30 | eqtrdi 2787 | . 2 ⊢ ((𝐹 = {〈2, 6〉, 〈3, 9〉} ∧ 𝐵 = {1, 2}) → (({〈2, 6〉} ↾ 𝐵) ∪ ({〈3, 9〉} ↾ 𝐵)) = {〈2, 6〉}) |
| 32 | 6, 31 | eqtrd 2771 | 1 ⊢ ((𝐹 = {〈2, 6〉, 〈3, 9〉} ∧ 𝐵 = {1, 2}) → (𝐹 ↾ 𝐵) = {〈2, 6〉}) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∪ cun 3929 ⊆ wss 3931 ∅c0 4313 {csn 4606 {cpr 4608 〈cop 4612 dom cdm 5659 ↾ cres 5661 Rel wrel 5664 ℝcr 11133 1c1 11135 2c2 12300 3c3 12301 6c6 12304 9c9 12307 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-po 5566 df-so 5567 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 |
| This theorem is referenced by: ex-ima 30428 |
| Copyright terms: Public domain | W3C validator |