| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ex-res | Structured version Visualization version GIF version | ||
| Description: Example for df-res 5635. Example by David A. Wheeler. (Contributed by Mario Carneiro, 7-May-2015.) |
| Ref | Expression |
|---|---|
| ex-res | ⊢ ((𝐹 = {〈2, 6〉, 〈3, 9〉} ∧ 𝐵 = {1, 2}) → (𝐹 ↾ 𝐵) = {〈2, 6〉}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . . . 5 ⊢ ((𝐹 = {〈2, 6〉, 〈3, 9〉} ∧ 𝐵 = {1, 2}) → 𝐹 = {〈2, 6〉, 〈3, 9〉}) | |
| 2 | df-pr 4582 | . . . . 5 ⊢ {〈2, 6〉, 〈3, 9〉} = ({〈2, 6〉} ∪ {〈3, 9〉}) | |
| 3 | 1, 2 | eqtrdi 2780 | . . . 4 ⊢ ((𝐹 = {〈2, 6〉, 〈3, 9〉} ∧ 𝐵 = {1, 2}) → 𝐹 = ({〈2, 6〉} ∪ {〈3, 9〉})) |
| 4 | 3 | reseq1d 5933 | . . 3 ⊢ ((𝐹 = {〈2, 6〉, 〈3, 9〉} ∧ 𝐵 = {1, 2}) → (𝐹 ↾ 𝐵) = (({〈2, 6〉} ∪ {〈3, 9〉}) ↾ 𝐵)) |
| 5 | resundir 5949 | . . 3 ⊢ (({〈2, 6〉} ∪ {〈3, 9〉}) ↾ 𝐵) = (({〈2, 6〉} ↾ 𝐵) ∪ ({〈3, 9〉} ↾ 𝐵)) | |
| 6 | 4, 5 | eqtrdi 2780 | . 2 ⊢ ((𝐹 = {〈2, 6〉, 〈3, 9〉} ∧ 𝐵 = {1, 2}) → (𝐹 ↾ 𝐵) = (({〈2, 6〉} ↾ 𝐵) ∪ ({〈3, 9〉} ↾ 𝐵))) |
| 7 | 2re 12220 | . . . . . . 7 ⊢ 2 ∈ ℝ | |
| 8 | 7 | elexi 3461 | . . . . . 6 ⊢ 2 ∈ V |
| 9 | 6re 12236 | . . . . . . 7 ⊢ 6 ∈ ℝ | |
| 10 | 9 | elexi 3461 | . . . . . 6 ⊢ 6 ∈ V |
| 11 | 8, 10 | relsnop 5752 | . . . . 5 ⊢ Rel {〈2, 6〉} |
| 12 | dmsnopss 6167 | . . . . . 6 ⊢ dom {〈2, 6〉} ⊆ {2} | |
| 13 | snsspr2 4769 | . . . . . . 7 ⊢ {2} ⊆ {1, 2} | |
| 14 | simpr 484 | . . . . . . 7 ⊢ ((𝐹 = {〈2, 6〉, 〈3, 9〉} ∧ 𝐵 = {1, 2}) → 𝐵 = {1, 2}) | |
| 15 | 13, 14 | sseqtrrid 3981 | . . . . . 6 ⊢ ((𝐹 = {〈2, 6〉, 〈3, 9〉} ∧ 𝐵 = {1, 2}) → {2} ⊆ 𝐵) |
| 16 | 12, 15 | sstrid 3949 | . . . . 5 ⊢ ((𝐹 = {〈2, 6〉, 〈3, 9〉} ∧ 𝐵 = {1, 2}) → dom {〈2, 6〉} ⊆ 𝐵) |
| 17 | relssres 5977 | . . . . 5 ⊢ ((Rel {〈2, 6〉} ∧ dom {〈2, 6〉} ⊆ 𝐵) → ({〈2, 6〉} ↾ 𝐵) = {〈2, 6〉}) | |
| 18 | 11, 16, 17 | sylancr 587 | . . . 4 ⊢ ((𝐹 = {〈2, 6〉, 〈3, 9〉} ∧ 𝐵 = {1, 2}) → ({〈2, 6〉} ↾ 𝐵) = {〈2, 6〉}) |
| 19 | 1re 11134 | . . . . . . . 8 ⊢ 1 ∈ ℝ | |
| 20 | 1lt3 12314 | . . . . . . . 8 ⊢ 1 < 3 | |
| 21 | 19, 20 | gtneii 11246 | . . . . . . 7 ⊢ 3 ≠ 1 |
| 22 | 2lt3 12313 | . . . . . . . 8 ⊢ 2 < 3 | |
| 23 | 7, 22 | gtneii 11246 | . . . . . . 7 ⊢ 3 ≠ 2 |
| 24 | 21, 23 | nelpri 4609 | . . . . . 6 ⊢ ¬ 3 ∈ {1, 2} |
| 25 | 14 | eleq2d 2814 | . . . . . 6 ⊢ ((𝐹 = {〈2, 6〉, 〈3, 9〉} ∧ 𝐵 = {1, 2}) → (3 ∈ 𝐵 ↔ 3 ∈ {1, 2})) |
| 26 | 24, 25 | mtbiri 327 | . . . . 5 ⊢ ((𝐹 = {〈2, 6〉, 〈3, 9〉} ∧ 𝐵 = {1, 2}) → ¬ 3 ∈ 𝐵) |
| 27 | ressnop0 7091 | . . . . 5 ⊢ (¬ 3 ∈ 𝐵 → ({〈3, 9〉} ↾ 𝐵) = ∅) | |
| 28 | 26, 27 | syl 17 | . . . 4 ⊢ ((𝐹 = {〈2, 6〉, 〈3, 9〉} ∧ 𝐵 = {1, 2}) → ({〈3, 9〉} ↾ 𝐵) = ∅) |
| 29 | 18, 28 | uneq12d 4122 | . . 3 ⊢ ((𝐹 = {〈2, 6〉, 〈3, 9〉} ∧ 𝐵 = {1, 2}) → (({〈2, 6〉} ↾ 𝐵) ∪ ({〈3, 9〉} ↾ 𝐵)) = ({〈2, 6〉} ∪ ∅)) |
| 30 | un0 4347 | . . 3 ⊢ ({〈2, 6〉} ∪ ∅) = {〈2, 6〉} | |
| 31 | 29, 30 | eqtrdi 2780 | . 2 ⊢ ((𝐹 = {〈2, 6〉, 〈3, 9〉} ∧ 𝐵 = {1, 2}) → (({〈2, 6〉} ↾ 𝐵) ∪ ({〈3, 9〉} ↾ 𝐵)) = {〈2, 6〉}) |
| 32 | 6, 31 | eqtrd 2764 | 1 ⊢ ((𝐹 = {〈2, 6〉, 〈3, 9〉} ∧ 𝐵 = {1, 2}) → (𝐹 ↾ 𝐵) = {〈2, 6〉}) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∪ cun 3903 ⊆ wss 3905 ∅c0 4286 {csn 4579 {cpr 4581 〈cop 4585 dom cdm 5623 ↾ cres 5625 Rel wrel 5628 ℝcr 11027 1c1 11029 2c2 12201 3c3 12202 6c6 12205 9c9 12208 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-po 5531 df-so 5532 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 |
| This theorem is referenced by: ex-ima 30404 |
| Copyright terms: Public domain | W3C validator |