MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ex-res Structured version   Visualization version   GIF version

Theorem ex-res 29962
Description: Example for df-res 5688. Example by David A. Wheeler. (Contributed by Mario Carneiro, 7-May-2015.)
Assertion
Ref Expression
ex-res ((𝐹 = {⟨2, 6⟩, ⟨3, 9⟩} ∧ 𝐵 = {1, 2}) → (𝐹𝐵) = {⟨2, 6⟩})

Proof of Theorem ex-res
StepHypRef Expression
1 simpl 482 . . . . 5 ((𝐹 = {⟨2, 6⟩, ⟨3, 9⟩} ∧ 𝐵 = {1, 2}) → 𝐹 = {⟨2, 6⟩, ⟨3, 9⟩})
2 df-pr 4631 . . . . 5 {⟨2, 6⟩, ⟨3, 9⟩} = ({⟨2, 6⟩} ∪ {⟨3, 9⟩})
31, 2eqtrdi 2787 . . . 4 ((𝐹 = {⟨2, 6⟩, ⟨3, 9⟩} ∧ 𝐵 = {1, 2}) → 𝐹 = ({⟨2, 6⟩} ∪ {⟨3, 9⟩}))
43reseq1d 5980 . . 3 ((𝐹 = {⟨2, 6⟩, ⟨3, 9⟩} ∧ 𝐵 = {1, 2}) → (𝐹𝐵) = (({⟨2, 6⟩} ∪ {⟨3, 9⟩}) ↾ 𝐵))
5 resundir 5996 . . 3 (({⟨2, 6⟩} ∪ {⟨3, 9⟩}) ↾ 𝐵) = (({⟨2, 6⟩} ↾ 𝐵) ∪ ({⟨3, 9⟩} ↾ 𝐵))
64, 5eqtrdi 2787 . 2 ((𝐹 = {⟨2, 6⟩, ⟨3, 9⟩} ∧ 𝐵 = {1, 2}) → (𝐹𝐵) = (({⟨2, 6⟩} ↾ 𝐵) ∪ ({⟨3, 9⟩} ↾ 𝐵)))
7 2re 12291 . . . . . . 7 2 ∈ ℝ
87elexi 3493 . . . . . 6 2 ∈ V
9 6re 12307 . . . . . . 7 6 ∈ ℝ
109elexi 3493 . . . . . 6 6 ∈ V
118, 10relsnop 5805 . . . . 5 Rel {⟨2, 6⟩}
12 dmsnopss 6213 . . . . . 6 dom {⟨2, 6⟩} ⊆ {2}
13 snsspr2 4818 . . . . . . 7 {2} ⊆ {1, 2}
14 simpr 484 . . . . . . 7 ((𝐹 = {⟨2, 6⟩, ⟨3, 9⟩} ∧ 𝐵 = {1, 2}) → 𝐵 = {1, 2})
1513, 14sseqtrrid 4035 . . . . . 6 ((𝐹 = {⟨2, 6⟩, ⟨3, 9⟩} ∧ 𝐵 = {1, 2}) → {2} ⊆ 𝐵)
1612, 15sstrid 3993 . . . . 5 ((𝐹 = {⟨2, 6⟩, ⟨3, 9⟩} ∧ 𝐵 = {1, 2}) → dom {⟨2, 6⟩} ⊆ 𝐵)
17 relssres 6022 . . . . 5 ((Rel {⟨2, 6⟩} ∧ dom {⟨2, 6⟩} ⊆ 𝐵) → ({⟨2, 6⟩} ↾ 𝐵) = {⟨2, 6⟩})
1811, 16, 17sylancr 586 . . . 4 ((𝐹 = {⟨2, 6⟩, ⟨3, 9⟩} ∧ 𝐵 = {1, 2}) → ({⟨2, 6⟩} ↾ 𝐵) = {⟨2, 6⟩})
19 1re 11219 . . . . . . . 8 1 ∈ ℝ
20 1lt3 12390 . . . . . . . 8 1 < 3
2119, 20gtneii 11331 . . . . . . 7 3 ≠ 1
22 2lt3 12389 . . . . . . . 8 2 < 3
237, 22gtneii 11331 . . . . . . 7 3 ≠ 2
2421, 23nelpri 4657 . . . . . 6 ¬ 3 ∈ {1, 2}
2514eleq2d 2818 . . . . . 6 ((𝐹 = {⟨2, 6⟩, ⟨3, 9⟩} ∧ 𝐵 = {1, 2}) → (3 ∈ 𝐵 ↔ 3 ∈ {1, 2}))
2624, 25mtbiri 327 . . . . 5 ((𝐹 = {⟨2, 6⟩, ⟨3, 9⟩} ∧ 𝐵 = {1, 2}) → ¬ 3 ∈ 𝐵)
27 ressnop0 7153 . . . . 5 (¬ 3 ∈ 𝐵 → ({⟨3, 9⟩} ↾ 𝐵) = ∅)
2826, 27syl 17 . . . 4 ((𝐹 = {⟨2, 6⟩, ⟨3, 9⟩} ∧ 𝐵 = {1, 2}) → ({⟨3, 9⟩} ↾ 𝐵) = ∅)
2918, 28uneq12d 4164 . . 3 ((𝐹 = {⟨2, 6⟩, ⟨3, 9⟩} ∧ 𝐵 = {1, 2}) → (({⟨2, 6⟩} ↾ 𝐵) ∪ ({⟨3, 9⟩} ↾ 𝐵)) = ({⟨2, 6⟩} ∪ ∅))
30 un0 4390 . . 3 ({⟨2, 6⟩} ∪ ∅) = {⟨2, 6⟩}
3129, 30eqtrdi 2787 . 2 ((𝐹 = {⟨2, 6⟩, ⟨3, 9⟩} ∧ 𝐵 = {1, 2}) → (({⟨2, 6⟩} ↾ 𝐵) ∪ ({⟨3, 9⟩} ↾ 𝐵)) = {⟨2, 6⟩})
326, 31eqtrd 2771 1 ((𝐹 = {⟨2, 6⟩, ⟨3, 9⟩} ∧ 𝐵 = {1, 2}) → (𝐹𝐵) = {⟨2, 6⟩})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2105  cun 3946  wss 3948  c0 4322  {csn 4628  {cpr 4630  cop 4634  dom cdm 5676  cres 5678  Rel wrel 5681  cr 11113  1c1 11115  2c2 12272  3c3 12273  6c6 12276  9c9 12279
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-resscn 11171  ax-1cn 11172  ax-icn 11173  ax-addcl 11174  ax-addrcl 11175  ax-mulcl 11176  ax-mulrcl 11177  ax-mulcom 11178  ax-addass 11179  ax-mulass 11180  ax-distr 11181  ax-i2m1 11182  ax-1ne0 11183  ax-1rid 11184  ax-rnegex 11185  ax-rrecex 11186  ax-cnre 11187  ax-pre-lttri 11188  ax-pre-lttrn 11189  ax-pre-ltadd 11190  ax-pre-mulgt0 11191
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-po 5588  df-so 5589  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-er 8707  df-en 8944  df-dom 8945  df-sdom 8946  df-pnf 11255  df-mnf 11256  df-xr 11257  df-ltxr 11258  df-le 11259  df-sub 11451  df-neg 11452  df-2 12280  df-3 12281  df-4 12282  df-5 12283  df-6 12284
This theorem is referenced by:  ex-ima  29963
  Copyright terms: Public domain W3C validator