![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ex-res | Structured version Visualization version GIF version |
Description: Example for df-res 5690. Example by David A. Wheeler. (Contributed by Mario Carneiro, 7-May-2015.) |
Ref | Expression |
---|---|
ex-res | ⊢ ((𝐹 = {⟨2, 6⟩, ⟨3, 9⟩} ∧ 𝐵 = {1, 2}) → (𝐹 ↾ 𝐵) = {⟨2, 6⟩}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 482 | . . . . 5 ⊢ ((𝐹 = {⟨2, 6⟩, ⟨3, 9⟩} ∧ 𝐵 = {1, 2}) → 𝐹 = {⟨2, 6⟩, ⟨3, 9⟩}) | |
2 | df-pr 4632 | . . . . 5 ⊢ {⟨2, 6⟩, ⟨3, 9⟩} = ({⟨2, 6⟩} ∪ {⟨3, 9⟩}) | |
3 | 1, 2 | eqtrdi 2784 | . . . 4 ⊢ ((𝐹 = {⟨2, 6⟩, ⟨3, 9⟩} ∧ 𝐵 = {1, 2}) → 𝐹 = ({⟨2, 6⟩} ∪ {⟨3, 9⟩})) |
4 | 3 | reseq1d 5984 | . . 3 ⊢ ((𝐹 = {⟨2, 6⟩, ⟨3, 9⟩} ∧ 𝐵 = {1, 2}) → (𝐹 ↾ 𝐵) = (({⟨2, 6⟩} ∪ {⟨3, 9⟩}) ↾ 𝐵)) |
5 | resundir 6000 | . . 3 ⊢ (({⟨2, 6⟩} ∪ {⟨3, 9⟩}) ↾ 𝐵) = (({⟨2, 6⟩} ↾ 𝐵) ∪ ({⟨3, 9⟩} ↾ 𝐵)) | |
6 | 4, 5 | eqtrdi 2784 | . 2 ⊢ ((𝐹 = {⟨2, 6⟩, ⟨3, 9⟩} ∧ 𝐵 = {1, 2}) → (𝐹 ↾ 𝐵) = (({⟨2, 6⟩} ↾ 𝐵) ∪ ({⟨3, 9⟩} ↾ 𝐵))) |
7 | 2re 12317 | . . . . . . 7 ⊢ 2 ∈ ℝ | |
8 | 7 | elexi 3491 | . . . . . 6 ⊢ 2 ∈ V |
9 | 6re 12333 | . . . . . . 7 ⊢ 6 ∈ ℝ | |
10 | 9 | elexi 3491 | . . . . . 6 ⊢ 6 ∈ V |
11 | 8, 10 | relsnop 5807 | . . . . 5 ⊢ Rel {⟨2, 6⟩} |
12 | dmsnopss 6218 | . . . . . 6 ⊢ dom {⟨2, 6⟩} ⊆ {2} | |
13 | snsspr2 4819 | . . . . . . 7 ⊢ {2} ⊆ {1, 2} | |
14 | simpr 484 | . . . . . . 7 ⊢ ((𝐹 = {⟨2, 6⟩, ⟨3, 9⟩} ∧ 𝐵 = {1, 2}) → 𝐵 = {1, 2}) | |
15 | 13, 14 | sseqtrrid 4033 | . . . . . 6 ⊢ ((𝐹 = {⟨2, 6⟩, ⟨3, 9⟩} ∧ 𝐵 = {1, 2}) → {2} ⊆ 𝐵) |
16 | 12, 15 | sstrid 3991 | . . . . 5 ⊢ ((𝐹 = {⟨2, 6⟩, ⟨3, 9⟩} ∧ 𝐵 = {1, 2}) → dom {⟨2, 6⟩} ⊆ 𝐵) |
17 | relssres 6026 | . . . . 5 ⊢ ((Rel {⟨2, 6⟩} ∧ dom {⟨2, 6⟩} ⊆ 𝐵) → ({⟨2, 6⟩} ↾ 𝐵) = {⟨2, 6⟩}) | |
18 | 11, 16, 17 | sylancr 586 | . . . 4 ⊢ ((𝐹 = {⟨2, 6⟩, ⟨3, 9⟩} ∧ 𝐵 = {1, 2}) → ({⟨2, 6⟩} ↾ 𝐵) = {⟨2, 6⟩}) |
19 | 1re 11245 | . . . . . . . 8 ⊢ 1 ∈ ℝ | |
20 | 1lt3 12416 | . . . . . . . 8 ⊢ 1 < 3 | |
21 | 19, 20 | gtneii 11357 | . . . . . . 7 ⊢ 3 ≠ 1 |
22 | 2lt3 12415 | . . . . . . . 8 ⊢ 2 < 3 | |
23 | 7, 22 | gtneii 11357 | . . . . . . 7 ⊢ 3 ≠ 2 |
24 | 21, 23 | nelpri 4658 | . . . . . 6 ⊢ ¬ 3 ∈ {1, 2} |
25 | 14 | eleq2d 2815 | . . . . . 6 ⊢ ((𝐹 = {⟨2, 6⟩, ⟨3, 9⟩} ∧ 𝐵 = {1, 2}) → (3 ∈ 𝐵 ↔ 3 ∈ {1, 2})) |
26 | 24, 25 | mtbiri 327 | . . . . 5 ⊢ ((𝐹 = {⟨2, 6⟩, ⟨3, 9⟩} ∧ 𝐵 = {1, 2}) → ¬ 3 ∈ 𝐵) |
27 | ressnop0 7162 | . . . . 5 ⊢ (¬ 3 ∈ 𝐵 → ({⟨3, 9⟩} ↾ 𝐵) = ∅) | |
28 | 26, 27 | syl 17 | . . . 4 ⊢ ((𝐹 = {⟨2, 6⟩, ⟨3, 9⟩} ∧ 𝐵 = {1, 2}) → ({⟨3, 9⟩} ↾ 𝐵) = ∅) |
29 | 18, 28 | uneq12d 4163 | . . 3 ⊢ ((𝐹 = {⟨2, 6⟩, ⟨3, 9⟩} ∧ 𝐵 = {1, 2}) → (({⟨2, 6⟩} ↾ 𝐵) ∪ ({⟨3, 9⟩} ↾ 𝐵)) = ({⟨2, 6⟩} ∪ ∅)) |
30 | un0 4391 | . . 3 ⊢ ({⟨2, 6⟩} ∪ ∅) = {⟨2, 6⟩} | |
31 | 29, 30 | eqtrdi 2784 | . 2 ⊢ ((𝐹 = {⟨2, 6⟩, ⟨3, 9⟩} ∧ 𝐵 = {1, 2}) → (({⟨2, 6⟩} ↾ 𝐵) ∪ ({⟨3, 9⟩} ↾ 𝐵)) = {⟨2, 6⟩}) |
32 | 6, 31 | eqtrd 2768 | 1 ⊢ ((𝐹 = {⟨2, 6⟩, ⟨3, 9⟩} ∧ 𝐵 = {1, 2}) → (𝐹 ↾ 𝐵) = {⟨2, 6⟩}) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ∪ cun 3945 ⊆ wss 3947 ∅c0 4323 {csn 4629 {cpr 4631 ⟨cop 4635 dom cdm 5678 ↾ cres 5680 Rel wrel 5683 ℝcr 11138 1c1 11140 2c2 12298 3c3 12299 6c6 12302 9c9 12305 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-resscn 11196 ax-1cn 11197 ax-icn 11198 ax-addcl 11199 ax-addrcl 11200 ax-mulcl 11201 ax-mulrcl 11202 ax-mulcom 11203 ax-addass 11204 ax-mulass 11205 ax-distr 11206 ax-i2m1 11207 ax-1ne0 11208 ax-1rid 11209 ax-rnegex 11210 ax-rrecex 11211 ax-cnre 11212 ax-pre-lttri 11213 ax-pre-lttrn 11214 ax-pre-ltadd 11215 ax-pre-mulgt0 11216 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5576 df-po 5590 df-so 5591 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11281 df-mnf 11282 df-xr 11283 df-ltxr 11284 df-le 11285 df-sub 11477 df-neg 11478 df-2 12306 df-3 12307 df-4 12308 df-5 12309 df-6 12310 |
This theorem is referenced by: ex-ima 30265 |
Copyright terms: Public domain | W3C validator |