MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ex-res Structured version   Visualization version   GIF version

Theorem ex-res 30416
Description: Example for df-res 5628. Example by David A. Wheeler. (Contributed by Mario Carneiro, 7-May-2015.)
Assertion
Ref Expression
ex-res ((𝐹 = {⟨2, 6⟩, ⟨3, 9⟩} ∧ 𝐵 = {1, 2}) → (𝐹𝐵) = {⟨2, 6⟩})

Proof of Theorem ex-res
StepHypRef Expression
1 simpl 482 . . . . 5 ((𝐹 = {⟨2, 6⟩, ⟨3, 9⟩} ∧ 𝐵 = {1, 2}) → 𝐹 = {⟨2, 6⟩, ⟨3, 9⟩})
2 df-pr 4579 . . . . 5 {⟨2, 6⟩, ⟨3, 9⟩} = ({⟨2, 6⟩} ∪ {⟨3, 9⟩})
31, 2eqtrdi 2782 . . . 4 ((𝐹 = {⟨2, 6⟩, ⟨3, 9⟩} ∧ 𝐵 = {1, 2}) → 𝐹 = ({⟨2, 6⟩} ∪ {⟨3, 9⟩}))
43reseq1d 5927 . . 3 ((𝐹 = {⟨2, 6⟩, ⟨3, 9⟩} ∧ 𝐵 = {1, 2}) → (𝐹𝐵) = (({⟨2, 6⟩} ∪ {⟨3, 9⟩}) ↾ 𝐵))
5 resundir 5943 . . 3 (({⟨2, 6⟩} ∪ {⟨3, 9⟩}) ↾ 𝐵) = (({⟨2, 6⟩} ↾ 𝐵) ∪ ({⟨3, 9⟩} ↾ 𝐵))
64, 5eqtrdi 2782 . 2 ((𝐹 = {⟨2, 6⟩, ⟨3, 9⟩} ∧ 𝐵 = {1, 2}) → (𝐹𝐵) = (({⟨2, 6⟩} ↾ 𝐵) ∪ ({⟨3, 9⟩} ↾ 𝐵)))
7 2re 12196 . . . . . . 7 2 ∈ ℝ
87elexi 3459 . . . . . 6 2 ∈ V
9 6re 12212 . . . . . . 7 6 ∈ ℝ
109elexi 3459 . . . . . 6 6 ∈ V
118, 10relsnop 5745 . . . . 5 Rel {⟨2, 6⟩}
12 dmsnopss 6161 . . . . . 6 dom {⟨2, 6⟩} ⊆ {2}
13 snsspr2 4767 . . . . . . 7 {2} ⊆ {1, 2}
14 simpr 484 . . . . . . 7 ((𝐹 = {⟨2, 6⟩, ⟨3, 9⟩} ∧ 𝐵 = {1, 2}) → 𝐵 = {1, 2})
1513, 14sseqtrrid 3978 . . . . . 6 ((𝐹 = {⟨2, 6⟩, ⟨3, 9⟩} ∧ 𝐵 = {1, 2}) → {2} ⊆ 𝐵)
1612, 15sstrid 3946 . . . . 5 ((𝐹 = {⟨2, 6⟩, ⟨3, 9⟩} ∧ 𝐵 = {1, 2}) → dom {⟨2, 6⟩} ⊆ 𝐵)
17 relssres 5971 . . . . 5 ((Rel {⟨2, 6⟩} ∧ dom {⟨2, 6⟩} ⊆ 𝐵) → ({⟨2, 6⟩} ↾ 𝐵) = {⟨2, 6⟩})
1811, 16, 17sylancr 587 . . . 4 ((𝐹 = {⟨2, 6⟩, ⟨3, 9⟩} ∧ 𝐵 = {1, 2}) → ({⟨2, 6⟩} ↾ 𝐵) = {⟨2, 6⟩})
19 1re 11109 . . . . . . . 8 1 ∈ ℝ
20 1lt3 12290 . . . . . . . 8 1 < 3
2119, 20gtneii 11222 . . . . . . 7 3 ≠ 1
22 2lt3 12289 . . . . . . . 8 2 < 3
237, 22gtneii 11222 . . . . . . 7 3 ≠ 2
2421, 23nelpri 4608 . . . . . 6 ¬ 3 ∈ {1, 2}
2514eleq2d 2817 . . . . . 6 ((𝐹 = {⟨2, 6⟩, ⟨3, 9⟩} ∧ 𝐵 = {1, 2}) → (3 ∈ 𝐵 ↔ 3 ∈ {1, 2}))
2624, 25mtbiri 327 . . . . 5 ((𝐹 = {⟨2, 6⟩, ⟨3, 9⟩} ∧ 𝐵 = {1, 2}) → ¬ 3 ∈ 𝐵)
27 ressnop0 7086 . . . . 5 (¬ 3 ∈ 𝐵 → ({⟨3, 9⟩} ↾ 𝐵) = ∅)
2826, 27syl 17 . . . 4 ((𝐹 = {⟨2, 6⟩, ⟨3, 9⟩} ∧ 𝐵 = {1, 2}) → ({⟨3, 9⟩} ↾ 𝐵) = ∅)
2918, 28uneq12d 4119 . . 3 ((𝐹 = {⟨2, 6⟩, ⟨3, 9⟩} ∧ 𝐵 = {1, 2}) → (({⟨2, 6⟩} ↾ 𝐵) ∪ ({⟨3, 9⟩} ↾ 𝐵)) = ({⟨2, 6⟩} ∪ ∅))
30 un0 4344 . . 3 ({⟨2, 6⟩} ∪ ∅) = {⟨2, 6⟩}
3129, 30eqtrdi 2782 . 2 ((𝐹 = {⟨2, 6⟩, ⟨3, 9⟩} ∧ 𝐵 = {1, 2}) → (({⟨2, 6⟩} ↾ 𝐵) ∪ ({⟨3, 9⟩} ↾ 𝐵)) = {⟨2, 6⟩})
326, 31eqtrd 2766 1 ((𝐹 = {⟨2, 6⟩, ⟨3, 9⟩} ∧ 𝐵 = {1, 2}) → (𝐹𝐵) = {⟨2, 6⟩})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2111  cun 3900  wss 3902  c0 4283  {csn 4576  {cpr 4578  cop 4582  dom cdm 5616  cres 5618  Rel wrel 5621  cr 11002  1c1 11004  2c2 12177  3c3 12178  6c6 12181  9c9 12184
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-po 5524  df-so 5525  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-2 12185  df-3 12186  df-4 12187  df-5 12188  df-6 12189
This theorem is referenced by:  ex-ima  30417
  Copyright terms: Public domain W3C validator