MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ex-res Structured version   Visualization version   GIF version

Theorem ex-res 30356
Description: Example for df-res 5664. Example by David A. Wheeler. (Contributed by Mario Carneiro, 7-May-2015.)
Assertion
Ref Expression
ex-res ((𝐹 = {⟨2, 6⟩, ⟨3, 9⟩} ∧ 𝐵 = {1, 2}) → (𝐹𝐵) = {⟨2, 6⟩})

Proof of Theorem ex-res
StepHypRef Expression
1 simpl 482 . . . . 5 ((𝐹 = {⟨2, 6⟩, ⟨3, 9⟩} ∧ 𝐵 = {1, 2}) → 𝐹 = {⟨2, 6⟩, ⟨3, 9⟩})
2 df-pr 4602 . . . . 5 {⟨2, 6⟩, ⟨3, 9⟩} = ({⟨2, 6⟩} ∪ {⟨3, 9⟩})
31, 2eqtrdi 2785 . . . 4 ((𝐹 = {⟨2, 6⟩, ⟨3, 9⟩} ∧ 𝐵 = {1, 2}) → 𝐹 = ({⟨2, 6⟩} ∪ {⟨3, 9⟩}))
43reseq1d 5963 . . 3 ((𝐹 = {⟨2, 6⟩, ⟨3, 9⟩} ∧ 𝐵 = {1, 2}) → (𝐹𝐵) = (({⟨2, 6⟩} ∪ {⟨3, 9⟩}) ↾ 𝐵))
5 resundir 5979 . . 3 (({⟨2, 6⟩} ∪ {⟨3, 9⟩}) ↾ 𝐵) = (({⟨2, 6⟩} ↾ 𝐵) ∪ ({⟨3, 9⟩} ↾ 𝐵))
64, 5eqtrdi 2785 . 2 ((𝐹 = {⟨2, 6⟩, ⟨3, 9⟩} ∧ 𝐵 = {1, 2}) → (𝐹𝐵) = (({⟨2, 6⟩} ↾ 𝐵) ∪ ({⟨3, 9⟩} ↾ 𝐵)))
7 2re 12307 . . . . . . 7 2 ∈ ℝ
87elexi 3480 . . . . . 6 2 ∈ V
9 6re 12323 . . . . . . 7 6 ∈ ℝ
109elexi 3480 . . . . . 6 6 ∈ V
118, 10relsnop 5782 . . . . 5 Rel {⟨2, 6⟩}
12 dmsnopss 6201 . . . . . 6 dom {⟨2, 6⟩} ⊆ {2}
13 snsspr2 4789 . . . . . . 7 {2} ⊆ {1, 2}
14 simpr 484 . . . . . . 7 ((𝐹 = {⟨2, 6⟩, ⟨3, 9⟩} ∧ 𝐵 = {1, 2}) → 𝐵 = {1, 2})
1513, 14sseqtrrid 4000 . . . . . 6 ((𝐹 = {⟨2, 6⟩, ⟨3, 9⟩} ∧ 𝐵 = {1, 2}) → {2} ⊆ 𝐵)
1612, 15sstrid 3968 . . . . 5 ((𝐹 = {⟨2, 6⟩, ⟨3, 9⟩} ∧ 𝐵 = {1, 2}) → dom {⟨2, 6⟩} ⊆ 𝐵)
17 relssres 6007 . . . . 5 ((Rel {⟨2, 6⟩} ∧ dom {⟨2, 6⟩} ⊆ 𝐵) → ({⟨2, 6⟩} ↾ 𝐵) = {⟨2, 6⟩})
1811, 16, 17sylancr 587 . . . 4 ((𝐹 = {⟨2, 6⟩, ⟨3, 9⟩} ∧ 𝐵 = {1, 2}) → ({⟨2, 6⟩} ↾ 𝐵) = {⟨2, 6⟩})
19 1re 11228 . . . . . . . 8 1 ∈ ℝ
20 1lt3 12406 . . . . . . . 8 1 < 3
2119, 20gtneii 11340 . . . . . . 7 3 ≠ 1
22 2lt3 12405 . . . . . . . 8 2 < 3
237, 22gtneii 11340 . . . . . . 7 3 ≠ 2
2421, 23nelpri 4629 . . . . . 6 ¬ 3 ∈ {1, 2}
2514eleq2d 2819 . . . . . 6 ((𝐹 = {⟨2, 6⟩, ⟨3, 9⟩} ∧ 𝐵 = {1, 2}) → (3 ∈ 𝐵 ↔ 3 ∈ {1, 2}))
2624, 25mtbiri 327 . . . . 5 ((𝐹 = {⟨2, 6⟩, ⟨3, 9⟩} ∧ 𝐵 = {1, 2}) → ¬ 3 ∈ 𝐵)
27 ressnop0 7140 . . . . 5 (¬ 3 ∈ 𝐵 → ({⟨3, 9⟩} ↾ 𝐵) = ∅)
2826, 27syl 17 . . . 4 ((𝐹 = {⟨2, 6⟩, ⟨3, 9⟩} ∧ 𝐵 = {1, 2}) → ({⟨3, 9⟩} ↾ 𝐵) = ∅)
2918, 28uneq12d 4142 . . 3 ((𝐹 = {⟨2, 6⟩, ⟨3, 9⟩} ∧ 𝐵 = {1, 2}) → (({⟨2, 6⟩} ↾ 𝐵) ∪ ({⟨3, 9⟩} ↾ 𝐵)) = ({⟨2, 6⟩} ∪ ∅))
30 un0 4367 . . 3 ({⟨2, 6⟩} ∪ ∅) = {⟨2, 6⟩}
3129, 30eqtrdi 2785 . 2 ((𝐹 = {⟨2, 6⟩, ⟨3, 9⟩} ∧ 𝐵 = {1, 2}) → (({⟨2, 6⟩} ↾ 𝐵) ∪ ({⟨3, 9⟩} ↾ 𝐵)) = {⟨2, 6⟩})
326, 31eqtrd 2769 1 ((𝐹 = {⟨2, 6⟩, ⟨3, 9⟩} ∧ 𝐵 = {1, 2}) → (𝐹𝐵) = {⟨2, 6⟩})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wcel 2107  cun 3922  wss 3924  c0 4306  {csn 4599  {cpr 4601  cop 4605  dom cdm 5652  cres 5654  Rel wrel 5657  cr 11121  1c1 11123  2c2 12288  3c3 12289  6c6 12292  9c9 12295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5264  ax-nul 5274  ax-pow 5333  ax-pr 5400  ax-un 7724  ax-resscn 11179  ax-1cn 11180  ax-icn 11181  ax-addcl 11182  ax-addrcl 11183  ax-mulcl 11184  ax-mulrcl 11185  ax-mulcom 11186  ax-addass 11187  ax-mulass 11188  ax-distr 11189  ax-i2m1 11190  ax-1ne0 11191  ax-1rid 11192  ax-rnegex 11193  ax-rrecex 11194  ax-cnre 11195  ax-pre-lttri 11196  ax-pre-lttrn 11197  ax-pre-ltadd 11198  ax-pre-mulgt0 11199
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4882  df-br 5118  df-opab 5180  df-mpt 5200  df-id 5546  df-po 5559  df-so 5560  df-xp 5658  df-rel 5659  df-cnv 5660  df-co 5661  df-dm 5662  df-rn 5663  df-res 5664  df-ima 5665  df-iota 6481  df-fun 6530  df-fn 6531  df-f 6532  df-f1 6533  df-fo 6534  df-f1o 6535  df-fv 6536  df-riota 7357  df-ov 7403  df-oprab 7404  df-mpo 7405  df-er 8714  df-en 8955  df-dom 8956  df-sdom 8957  df-pnf 11264  df-mnf 11265  df-xr 11266  df-ltxr 11267  df-le 11268  df-sub 11461  df-neg 11462  df-2 12296  df-3 12297  df-4 12298  df-5 12299  df-6 12300
This theorem is referenced by:  ex-ima  30357
  Copyright terms: Public domain W3C validator