![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ex-res | Structured version Visualization version GIF version |
Description: Example for df-res 5687. Example by David A. Wheeler. (Contributed by Mario Carneiro, 7-May-2015.) |
Ref | Expression |
---|---|
ex-res | ⊢ ((𝐹 = {⟨2, 6⟩, ⟨3, 9⟩} ∧ 𝐵 = {1, 2}) → (𝐹 ↾ 𝐵) = {⟨2, 6⟩}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 483 | . . . . 5 ⊢ ((𝐹 = {⟨2, 6⟩, ⟨3, 9⟩} ∧ 𝐵 = {1, 2}) → 𝐹 = {⟨2, 6⟩, ⟨3, 9⟩}) | |
2 | df-pr 4630 | . . . . 5 ⊢ {⟨2, 6⟩, ⟨3, 9⟩} = ({⟨2, 6⟩} ∪ {⟨3, 9⟩}) | |
3 | 1, 2 | eqtrdi 2788 | . . . 4 ⊢ ((𝐹 = {⟨2, 6⟩, ⟨3, 9⟩} ∧ 𝐵 = {1, 2}) → 𝐹 = ({⟨2, 6⟩} ∪ {⟨3, 9⟩})) |
4 | 3 | reseq1d 5978 | . . 3 ⊢ ((𝐹 = {⟨2, 6⟩, ⟨3, 9⟩} ∧ 𝐵 = {1, 2}) → (𝐹 ↾ 𝐵) = (({⟨2, 6⟩} ∪ {⟨3, 9⟩}) ↾ 𝐵)) |
5 | resundir 5994 | . . 3 ⊢ (({⟨2, 6⟩} ∪ {⟨3, 9⟩}) ↾ 𝐵) = (({⟨2, 6⟩} ↾ 𝐵) ∪ ({⟨3, 9⟩} ↾ 𝐵)) | |
6 | 4, 5 | eqtrdi 2788 | . 2 ⊢ ((𝐹 = {⟨2, 6⟩, ⟨3, 9⟩} ∧ 𝐵 = {1, 2}) → (𝐹 ↾ 𝐵) = (({⟨2, 6⟩} ↾ 𝐵) ∪ ({⟨3, 9⟩} ↾ 𝐵))) |
7 | 2re 12282 | . . . . . . 7 ⊢ 2 ∈ ℝ | |
8 | 7 | elexi 3493 | . . . . . 6 ⊢ 2 ∈ V |
9 | 6re 12298 | . . . . . . 7 ⊢ 6 ∈ ℝ | |
10 | 9 | elexi 3493 | . . . . . 6 ⊢ 6 ∈ V |
11 | 8, 10 | relsnop 5803 | . . . . 5 ⊢ Rel {⟨2, 6⟩} |
12 | dmsnopss 6210 | . . . . . 6 ⊢ dom {⟨2, 6⟩} ⊆ {2} | |
13 | snsspr2 4817 | . . . . . . 7 ⊢ {2} ⊆ {1, 2} | |
14 | simpr 485 | . . . . . . 7 ⊢ ((𝐹 = {⟨2, 6⟩, ⟨3, 9⟩} ∧ 𝐵 = {1, 2}) → 𝐵 = {1, 2}) | |
15 | 13, 14 | sseqtrrid 4034 | . . . . . 6 ⊢ ((𝐹 = {⟨2, 6⟩, ⟨3, 9⟩} ∧ 𝐵 = {1, 2}) → {2} ⊆ 𝐵) |
16 | 12, 15 | sstrid 3992 | . . . . 5 ⊢ ((𝐹 = {⟨2, 6⟩, ⟨3, 9⟩} ∧ 𝐵 = {1, 2}) → dom {⟨2, 6⟩} ⊆ 𝐵) |
17 | relssres 6020 | . . . . 5 ⊢ ((Rel {⟨2, 6⟩} ∧ dom {⟨2, 6⟩} ⊆ 𝐵) → ({⟨2, 6⟩} ↾ 𝐵) = {⟨2, 6⟩}) | |
18 | 11, 16, 17 | sylancr 587 | . . . 4 ⊢ ((𝐹 = {⟨2, 6⟩, ⟨3, 9⟩} ∧ 𝐵 = {1, 2}) → ({⟨2, 6⟩} ↾ 𝐵) = {⟨2, 6⟩}) |
19 | 1re 11210 | . . . . . . . 8 ⊢ 1 ∈ ℝ | |
20 | 1lt3 12381 | . . . . . . . 8 ⊢ 1 < 3 | |
21 | 19, 20 | gtneii 11322 | . . . . . . 7 ⊢ 3 ≠ 1 |
22 | 2lt3 12380 | . . . . . . . 8 ⊢ 2 < 3 | |
23 | 7, 22 | gtneii 11322 | . . . . . . 7 ⊢ 3 ≠ 2 |
24 | 21, 23 | nelpri 4656 | . . . . . 6 ⊢ ¬ 3 ∈ {1, 2} |
25 | 14 | eleq2d 2819 | . . . . . 6 ⊢ ((𝐹 = {⟨2, 6⟩, ⟨3, 9⟩} ∧ 𝐵 = {1, 2}) → (3 ∈ 𝐵 ↔ 3 ∈ {1, 2})) |
26 | 24, 25 | mtbiri 326 | . . . . 5 ⊢ ((𝐹 = {⟨2, 6⟩, ⟨3, 9⟩} ∧ 𝐵 = {1, 2}) → ¬ 3 ∈ 𝐵) |
27 | ressnop0 7147 | . . . . 5 ⊢ (¬ 3 ∈ 𝐵 → ({⟨3, 9⟩} ↾ 𝐵) = ∅) | |
28 | 26, 27 | syl 17 | . . . 4 ⊢ ((𝐹 = {⟨2, 6⟩, ⟨3, 9⟩} ∧ 𝐵 = {1, 2}) → ({⟨3, 9⟩} ↾ 𝐵) = ∅) |
29 | 18, 28 | uneq12d 4163 | . . 3 ⊢ ((𝐹 = {⟨2, 6⟩, ⟨3, 9⟩} ∧ 𝐵 = {1, 2}) → (({⟨2, 6⟩} ↾ 𝐵) ∪ ({⟨3, 9⟩} ↾ 𝐵)) = ({⟨2, 6⟩} ∪ ∅)) |
30 | un0 4389 | . . 3 ⊢ ({⟨2, 6⟩} ∪ ∅) = {⟨2, 6⟩} | |
31 | 29, 30 | eqtrdi 2788 | . 2 ⊢ ((𝐹 = {⟨2, 6⟩, ⟨3, 9⟩} ∧ 𝐵 = {1, 2}) → (({⟨2, 6⟩} ↾ 𝐵) ∪ ({⟨3, 9⟩} ↾ 𝐵)) = {⟨2, 6⟩}) |
32 | 6, 31 | eqtrd 2772 | 1 ⊢ ((𝐹 = {⟨2, 6⟩, ⟨3, 9⟩} ∧ 𝐵 = {1, 2}) → (𝐹 ↾ 𝐵) = {⟨2, 6⟩}) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∪ cun 3945 ⊆ wss 3947 ∅c0 4321 {csn 4627 {cpr 4629 ⟨cop 4633 dom cdm 5675 ↾ cres 5677 Rel wrel 5680 ℝcr 11105 1c1 11107 2c2 12263 3c3 12264 6c6 12267 9c9 12270 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-po 5587 df-so 5588 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 |
This theorem is referenced by: ex-ima 29684 |
Copyright terms: Public domain | W3C validator |