![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ex-res | Structured version Visualization version GIF version |
Description: Example for df-res 5688. Example by David A. Wheeler. (Contributed by Mario Carneiro, 7-May-2015.) |
Ref | Expression |
---|---|
ex-res | ⊢ ((𝐹 = {〈2, 6〉, 〈3, 9〉} ∧ 𝐵 = {1, 2}) → (𝐹 ↾ 𝐵) = {〈2, 6〉}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 482 | . . . . 5 ⊢ ((𝐹 = {〈2, 6〉, 〈3, 9〉} ∧ 𝐵 = {1, 2}) → 𝐹 = {〈2, 6〉, 〈3, 9〉}) | |
2 | df-pr 4631 | . . . . 5 ⊢ {〈2, 6〉, 〈3, 9〉} = ({〈2, 6〉} ∪ {〈3, 9〉}) | |
3 | 1, 2 | eqtrdi 2787 | . . . 4 ⊢ ((𝐹 = {〈2, 6〉, 〈3, 9〉} ∧ 𝐵 = {1, 2}) → 𝐹 = ({〈2, 6〉} ∪ {〈3, 9〉})) |
4 | 3 | reseq1d 5980 | . . 3 ⊢ ((𝐹 = {〈2, 6〉, 〈3, 9〉} ∧ 𝐵 = {1, 2}) → (𝐹 ↾ 𝐵) = (({〈2, 6〉} ∪ {〈3, 9〉}) ↾ 𝐵)) |
5 | resundir 5996 | . . 3 ⊢ (({〈2, 6〉} ∪ {〈3, 9〉}) ↾ 𝐵) = (({〈2, 6〉} ↾ 𝐵) ∪ ({〈3, 9〉} ↾ 𝐵)) | |
6 | 4, 5 | eqtrdi 2787 | . 2 ⊢ ((𝐹 = {〈2, 6〉, 〈3, 9〉} ∧ 𝐵 = {1, 2}) → (𝐹 ↾ 𝐵) = (({〈2, 6〉} ↾ 𝐵) ∪ ({〈3, 9〉} ↾ 𝐵))) |
7 | 2re 12291 | . . . . . . 7 ⊢ 2 ∈ ℝ | |
8 | 7 | elexi 3493 | . . . . . 6 ⊢ 2 ∈ V |
9 | 6re 12307 | . . . . . . 7 ⊢ 6 ∈ ℝ | |
10 | 9 | elexi 3493 | . . . . . 6 ⊢ 6 ∈ V |
11 | 8, 10 | relsnop 5805 | . . . . 5 ⊢ Rel {〈2, 6〉} |
12 | dmsnopss 6213 | . . . . . 6 ⊢ dom {〈2, 6〉} ⊆ {2} | |
13 | snsspr2 4818 | . . . . . . 7 ⊢ {2} ⊆ {1, 2} | |
14 | simpr 484 | . . . . . . 7 ⊢ ((𝐹 = {〈2, 6〉, 〈3, 9〉} ∧ 𝐵 = {1, 2}) → 𝐵 = {1, 2}) | |
15 | 13, 14 | sseqtrrid 4035 | . . . . . 6 ⊢ ((𝐹 = {〈2, 6〉, 〈3, 9〉} ∧ 𝐵 = {1, 2}) → {2} ⊆ 𝐵) |
16 | 12, 15 | sstrid 3993 | . . . . 5 ⊢ ((𝐹 = {〈2, 6〉, 〈3, 9〉} ∧ 𝐵 = {1, 2}) → dom {〈2, 6〉} ⊆ 𝐵) |
17 | relssres 6022 | . . . . 5 ⊢ ((Rel {〈2, 6〉} ∧ dom {〈2, 6〉} ⊆ 𝐵) → ({〈2, 6〉} ↾ 𝐵) = {〈2, 6〉}) | |
18 | 11, 16, 17 | sylancr 586 | . . . 4 ⊢ ((𝐹 = {〈2, 6〉, 〈3, 9〉} ∧ 𝐵 = {1, 2}) → ({〈2, 6〉} ↾ 𝐵) = {〈2, 6〉}) |
19 | 1re 11219 | . . . . . . . 8 ⊢ 1 ∈ ℝ | |
20 | 1lt3 12390 | . . . . . . . 8 ⊢ 1 < 3 | |
21 | 19, 20 | gtneii 11331 | . . . . . . 7 ⊢ 3 ≠ 1 |
22 | 2lt3 12389 | . . . . . . . 8 ⊢ 2 < 3 | |
23 | 7, 22 | gtneii 11331 | . . . . . . 7 ⊢ 3 ≠ 2 |
24 | 21, 23 | nelpri 4657 | . . . . . 6 ⊢ ¬ 3 ∈ {1, 2} |
25 | 14 | eleq2d 2818 | . . . . . 6 ⊢ ((𝐹 = {〈2, 6〉, 〈3, 9〉} ∧ 𝐵 = {1, 2}) → (3 ∈ 𝐵 ↔ 3 ∈ {1, 2})) |
26 | 24, 25 | mtbiri 327 | . . . . 5 ⊢ ((𝐹 = {〈2, 6〉, 〈3, 9〉} ∧ 𝐵 = {1, 2}) → ¬ 3 ∈ 𝐵) |
27 | ressnop0 7153 | . . . . 5 ⊢ (¬ 3 ∈ 𝐵 → ({〈3, 9〉} ↾ 𝐵) = ∅) | |
28 | 26, 27 | syl 17 | . . . 4 ⊢ ((𝐹 = {〈2, 6〉, 〈3, 9〉} ∧ 𝐵 = {1, 2}) → ({〈3, 9〉} ↾ 𝐵) = ∅) |
29 | 18, 28 | uneq12d 4164 | . . 3 ⊢ ((𝐹 = {〈2, 6〉, 〈3, 9〉} ∧ 𝐵 = {1, 2}) → (({〈2, 6〉} ↾ 𝐵) ∪ ({〈3, 9〉} ↾ 𝐵)) = ({〈2, 6〉} ∪ ∅)) |
30 | un0 4390 | . . 3 ⊢ ({〈2, 6〉} ∪ ∅) = {〈2, 6〉} | |
31 | 29, 30 | eqtrdi 2787 | . 2 ⊢ ((𝐹 = {〈2, 6〉, 〈3, 9〉} ∧ 𝐵 = {1, 2}) → (({〈2, 6〉} ↾ 𝐵) ∪ ({〈3, 9〉} ↾ 𝐵)) = {〈2, 6〉}) |
32 | 6, 31 | eqtrd 2771 | 1 ⊢ ((𝐹 = {〈2, 6〉, 〈3, 9〉} ∧ 𝐵 = {1, 2}) → (𝐹 ↾ 𝐵) = {〈2, 6〉}) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2105 ∪ cun 3946 ⊆ wss 3948 ∅c0 4322 {csn 4628 {cpr 4630 〈cop 4634 dom cdm 5676 ↾ cres 5678 Rel wrel 5681 ℝcr 11113 1c1 11115 2c2 12272 3c3 12273 6c6 12276 9c9 12279 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-po 5588 df-so 5589 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-er 8707 df-en 8944 df-dom 8945 df-sdom 8946 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-2 12280 df-3 12281 df-4 12282 df-5 12283 df-6 12284 |
This theorem is referenced by: ex-ima 29963 |
Copyright terms: Public domain | W3C validator |