| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ex-res | Structured version Visualization version GIF version | ||
| Description: Example for df-res 5664. Example by David A. Wheeler. (Contributed by Mario Carneiro, 7-May-2015.) |
| Ref | Expression |
|---|---|
| ex-res | ⊢ ((𝐹 = {〈2, 6〉, 〈3, 9〉} ∧ 𝐵 = {1, 2}) → (𝐹 ↾ 𝐵) = {〈2, 6〉}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . . . 5 ⊢ ((𝐹 = {〈2, 6〉, 〈3, 9〉} ∧ 𝐵 = {1, 2}) → 𝐹 = {〈2, 6〉, 〈3, 9〉}) | |
| 2 | df-pr 4602 | . . . . 5 ⊢ {〈2, 6〉, 〈3, 9〉} = ({〈2, 6〉} ∪ {〈3, 9〉}) | |
| 3 | 1, 2 | eqtrdi 2785 | . . . 4 ⊢ ((𝐹 = {〈2, 6〉, 〈3, 9〉} ∧ 𝐵 = {1, 2}) → 𝐹 = ({〈2, 6〉} ∪ {〈3, 9〉})) |
| 4 | 3 | reseq1d 5963 | . . 3 ⊢ ((𝐹 = {〈2, 6〉, 〈3, 9〉} ∧ 𝐵 = {1, 2}) → (𝐹 ↾ 𝐵) = (({〈2, 6〉} ∪ {〈3, 9〉}) ↾ 𝐵)) |
| 5 | resundir 5979 | . . 3 ⊢ (({〈2, 6〉} ∪ {〈3, 9〉}) ↾ 𝐵) = (({〈2, 6〉} ↾ 𝐵) ∪ ({〈3, 9〉} ↾ 𝐵)) | |
| 6 | 4, 5 | eqtrdi 2785 | . 2 ⊢ ((𝐹 = {〈2, 6〉, 〈3, 9〉} ∧ 𝐵 = {1, 2}) → (𝐹 ↾ 𝐵) = (({〈2, 6〉} ↾ 𝐵) ∪ ({〈3, 9〉} ↾ 𝐵))) |
| 7 | 2re 12307 | . . . . . . 7 ⊢ 2 ∈ ℝ | |
| 8 | 7 | elexi 3480 | . . . . . 6 ⊢ 2 ∈ V |
| 9 | 6re 12323 | . . . . . . 7 ⊢ 6 ∈ ℝ | |
| 10 | 9 | elexi 3480 | . . . . . 6 ⊢ 6 ∈ V |
| 11 | 8, 10 | relsnop 5782 | . . . . 5 ⊢ Rel {〈2, 6〉} |
| 12 | dmsnopss 6201 | . . . . . 6 ⊢ dom {〈2, 6〉} ⊆ {2} | |
| 13 | snsspr2 4789 | . . . . . . 7 ⊢ {2} ⊆ {1, 2} | |
| 14 | simpr 484 | . . . . . . 7 ⊢ ((𝐹 = {〈2, 6〉, 〈3, 9〉} ∧ 𝐵 = {1, 2}) → 𝐵 = {1, 2}) | |
| 15 | 13, 14 | sseqtrrid 4000 | . . . . . 6 ⊢ ((𝐹 = {〈2, 6〉, 〈3, 9〉} ∧ 𝐵 = {1, 2}) → {2} ⊆ 𝐵) |
| 16 | 12, 15 | sstrid 3968 | . . . . 5 ⊢ ((𝐹 = {〈2, 6〉, 〈3, 9〉} ∧ 𝐵 = {1, 2}) → dom {〈2, 6〉} ⊆ 𝐵) |
| 17 | relssres 6007 | . . . . 5 ⊢ ((Rel {〈2, 6〉} ∧ dom {〈2, 6〉} ⊆ 𝐵) → ({〈2, 6〉} ↾ 𝐵) = {〈2, 6〉}) | |
| 18 | 11, 16, 17 | sylancr 587 | . . . 4 ⊢ ((𝐹 = {〈2, 6〉, 〈3, 9〉} ∧ 𝐵 = {1, 2}) → ({〈2, 6〉} ↾ 𝐵) = {〈2, 6〉}) |
| 19 | 1re 11228 | . . . . . . . 8 ⊢ 1 ∈ ℝ | |
| 20 | 1lt3 12406 | . . . . . . . 8 ⊢ 1 < 3 | |
| 21 | 19, 20 | gtneii 11340 | . . . . . . 7 ⊢ 3 ≠ 1 |
| 22 | 2lt3 12405 | . . . . . . . 8 ⊢ 2 < 3 | |
| 23 | 7, 22 | gtneii 11340 | . . . . . . 7 ⊢ 3 ≠ 2 |
| 24 | 21, 23 | nelpri 4629 | . . . . . 6 ⊢ ¬ 3 ∈ {1, 2} |
| 25 | 14 | eleq2d 2819 | . . . . . 6 ⊢ ((𝐹 = {〈2, 6〉, 〈3, 9〉} ∧ 𝐵 = {1, 2}) → (3 ∈ 𝐵 ↔ 3 ∈ {1, 2})) |
| 26 | 24, 25 | mtbiri 327 | . . . . 5 ⊢ ((𝐹 = {〈2, 6〉, 〈3, 9〉} ∧ 𝐵 = {1, 2}) → ¬ 3 ∈ 𝐵) |
| 27 | ressnop0 7140 | . . . . 5 ⊢ (¬ 3 ∈ 𝐵 → ({〈3, 9〉} ↾ 𝐵) = ∅) | |
| 28 | 26, 27 | syl 17 | . . . 4 ⊢ ((𝐹 = {〈2, 6〉, 〈3, 9〉} ∧ 𝐵 = {1, 2}) → ({〈3, 9〉} ↾ 𝐵) = ∅) |
| 29 | 18, 28 | uneq12d 4142 | . . 3 ⊢ ((𝐹 = {〈2, 6〉, 〈3, 9〉} ∧ 𝐵 = {1, 2}) → (({〈2, 6〉} ↾ 𝐵) ∪ ({〈3, 9〉} ↾ 𝐵)) = ({〈2, 6〉} ∪ ∅)) |
| 30 | un0 4367 | . . 3 ⊢ ({〈2, 6〉} ∪ ∅) = {〈2, 6〉} | |
| 31 | 29, 30 | eqtrdi 2785 | . 2 ⊢ ((𝐹 = {〈2, 6〉, 〈3, 9〉} ∧ 𝐵 = {1, 2}) → (({〈2, 6〉} ↾ 𝐵) ∪ ({〈3, 9〉} ↾ 𝐵)) = {〈2, 6〉}) |
| 32 | 6, 31 | eqtrd 2769 | 1 ⊢ ((𝐹 = {〈2, 6〉, 〈3, 9〉} ∧ 𝐵 = {1, 2}) → (𝐹 ↾ 𝐵) = {〈2, 6〉}) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∪ cun 3922 ⊆ wss 3924 ∅c0 4306 {csn 4599 {cpr 4601 〈cop 4605 dom cdm 5652 ↾ cres 5654 Rel wrel 5657 ℝcr 11121 1c1 11123 2c2 12288 3c3 12289 6c6 12292 9c9 12295 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5264 ax-nul 5274 ax-pow 5333 ax-pr 5400 ax-un 7724 ax-resscn 11179 ax-1cn 11180 ax-icn 11181 ax-addcl 11182 ax-addrcl 11183 ax-mulcl 11184 ax-mulrcl 11185 ax-mulcom 11186 ax-addass 11187 ax-mulass 11188 ax-distr 11189 ax-i2m1 11190 ax-1ne0 11191 ax-1rid 11192 ax-rnegex 11193 ax-rrecex 11194 ax-cnre 11195 ax-pre-lttri 11196 ax-pre-lttrn 11197 ax-pre-ltadd 11198 ax-pre-mulgt0 11199 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4882 df-br 5118 df-opab 5180 df-mpt 5200 df-id 5546 df-po 5559 df-so 5560 df-xp 5658 df-rel 5659 df-cnv 5660 df-co 5661 df-dm 5662 df-rn 5663 df-res 5664 df-ima 5665 df-iota 6481 df-fun 6530 df-fn 6531 df-f 6532 df-f1 6533 df-fo 6534 df-f1o 6535 df-fv 6536 df-riota 7357 df-ov 7403 df-oprab 7404 df-mpo 7405 df-er 8714 df-en 8955 df-dom 8956 df-sdom 8957 df-pnf 11264 df-mnf 11265 df-xr 11266 df-ltxr 11267 df-le 11268 df-sub 11461 df-neg 11462 df-2 12296 df-3 12297 df-4 12298 df-5 12299 df-6 12300 |
| This theorem is referenced by: ex-ima 30357 |
| Copyright terms: Public domain | W3C validator |