| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1466 | Structured version Visualization version GIF version | ||
| Description: Technical lemma for bnj60 35098. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj1466.1 | ⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} |
| bnj1466.2 | ⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 |
| bnj1466.3 | ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} |
| bnj1466.4 | ⊢ (𝜏 ↔ (𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))) |
| bnj1466.5 | ⊢ 𝐷 = {𝑥 ∈ 𝐴 ∣ ¬ ∃𝑓𝜏} |
| bnj1466.6 | ⊢ (𝜓 ↔ (𝑅 FrSe 𝐴 ∧ 𝐷 ≠ ∅)) |
| bnj1466.7 | ⊢ (𝜒 ↔ (𝜓 ∧ 𝑥 ∈ 𝐷 ∧ ∀𝑦 ∈ 𝐷 ¬ 𝑦𝑅𝑥)) |
| bnj1466.8 | ⊢ (𝜏′ ↔ [𝑦 / 𝑥]𝜏) |
| bnj1466.9 | ⊢ 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′} |
| bnj1466.10 | ⊢ 𝑃 = ∪ 𝐻 |
| bnj1466.11 | ⊢ 𝑍 = 〈𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))〉 |
| bnj1466.12 | ⊢ 𝑄 = (𝑃 ∪ {〈𝑥, (𝐺‘𝑍)〉}) |
| Ref | Expression |
|---|---|
| bnj1466 | ⊢ (𝑤 ∈ 𝑄 → ∀𝑓 𝑤 ∈ 𝑄) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj1466.12 | . . 3 ⊢ 𝑄 = (𝑃 ∪ {〈𝑥, (𝐺‘𝑍)〉}) | |
| 2 | bnj1466.10 | . . . . 5 ⊢ 𝑃 = ∪ 𝐻 | |
| 3 | bnj1466.9 | . . . . . . . 8 ⊢ 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′} | |
| 4 | 3 | bnj1317 34857 | . . . . . . 7 ⊢ (𝑤 ∈ 𝐻 → ∀𝑓 𝑤 ∈ 𝐻) |
| 5 | 4 | nfcii 2888 | . . . . . 6 ⊢ Ⅎ𝑓𝐻 |
| 6 | 5 | nfuni 4895 | . . . . 5 ⊢ Ⅎ𝑓∪ 𝐻 |
| 7 | 2, 6 | nfcxfr 2897 | . . . 4 ⊢ Ⅎ𝑓𝑃 |
| 8 | nfcv 2899 | . . . . . 6 ⊢ Ⅎ𝑓𝑥 | |
| 9 | nfcv 2899 | . . . . . . 7 ⊢ Ⅎ𝑓𝐺 | |
| 10 | bnj1466.11 | . . . . . . . 8 ⊢ 𝑍 = 〈𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))〉 | |
| 11 | nfcv 2899 | . . . . . . . . . 10 ⊢ Ⅎ𝑓 pred(𝑥, 𝐴, 𝑅) | |
| 12 | 7, 11 | nfres 5973 | . . . . . . . . 9 ⊢ Ⅎ𝑓(𝑃 ↾ pred(𝑥, 𝐴, 𝑅)) |
| 13 | 8, 12 | nfop 4870 | . . . . . . . 8 ⊢ Ⅎ𝑓〈𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))〉 |
| 14 | 10, 13 | nfcxfr 2897 | . . . . . . 7 ⊢ Ⅎ𝑓𝑍 |
| 15 | 9, 14 | nffv 6891 | . . . . . 6 ⊢ Ⅎ𝑓(𝐺‘𝑍) |
| 16 | 8, 15 | nfop 4870 | . . . . 5 ⊢ Ⅎ𝑓〈𝑥, (𝐺‘𝑍)〉 |
| 17 | 16 | nfsn 4688 | . . . 4 ⊢ Ⅎ𝑓{〈𝑥, (𝐺‘𝑍)〉} |
| 18 | 7, 17 | nfun 4150 | . . 3 ⊢ Ⅎ𝑓(𝑃 ∪ {〈𝑥, (𝐺‘𝑍)〉}) |
| 19 | 1, 18 | nfcxfr 2897 | . 2 ⊢ Ⅎ𝑓𝑄 |
| 20 | 19 | nfcrii 2894 | 1 ⊢ (𝑤 ∈ 𝑄 → ∀𝑓 𝑤 ∈ 𝑄) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∀wal 1538 = wceq 1540 ∃wex 1779 ∈ wcel 2109 {cab 2714 ≠ wne 2933 ∀wral 3052 ∃wrex 3061 {crab 3420 [wsbc 3770 ∪ cun 3929 ⊆ wss 3931 ∅c0 4313 {csn 4606 〈cop 4612 ∪ cuni 4888 class class class wbr 5124 dom cdm 5659 ↾ cres 5661 Fn wfn 6531 ‘cfv 6536 predc-bnj14 34724 FrSe w-bnj15 34728 trClc-bnj18 34730 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-xp 5665 df-res 5671 df-iota 6489 df-fv 6544 |
| This theorem is referenced by: bnj1463 35091 bnj1491 35093 |
| Copyright terms: Public domain | W3C validator |