![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1466 | Structured version Visualization version GIF version |
Description: Technical lemma for bnj60 34073. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj1466.1 | ⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} |
bnj1466.2 | ⊢ 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩ |
bnj1466.3 | ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} |
bnj1466.4 | ⊢ (𝜏 ↔ (𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))) |
bnj1466.5 | ⊢ 𝐷 = {𝑥 ∈ 𝐴 ∣ ¬ ∃𝑓𝜏} |
bnj1466.6 | ⊢ (𝜓 ↔ (𝑅 FrSe 𝐴 ∧ 𝐷 ≠ ∅)) |
bnj1466.7 | ⊢ (𝜒 ↔ (𝜓 ∧ 𝑥 ∈ 𝐷 ∧ ∀𝑦 ∈ 𝐷 ¬ 𝑦𝑅𝑥)) |
bnj1466.8 | ⊢ (𝜏′ ↔ [𝑦 / 𝑥]𝜏) |
bnj1466.9 | ⊢ 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′} |
bnj1466.10 | ⊢ 𝑃 = ∪ 𝐻 |
bnj1466.11 | ⊢ 𝑍 = ⟨𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))⟩ |
bnj1466.12 | ⊢ 𝑄 = (𝑃 ∪ {⟨𝑥, (𝐺‘𝑍)⟩}) |
Ref | Expression |
---|---|
bnj1466 | ⊢ (𝑤 ∈ 𝑄 → ∀𝑓 𝑤 ∈ 𝑄) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1466.12 | . . 3 ⊢ 𝑄 = (𝑃 ∪ {⟨𝑥, (𝐺‘𝑍)⟩}) | |
2 | bnj1466.10 | . . . . 5 ⊢ 𝑃 = ∪ 𝐻 | |
3 | bnj1466.9 | . . . . . . . 8 ⊢ 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′} | |
4 | 3 | bnj1317 33832 | . . . . . . 7 ⊢ (𝑤 ∈ 𝐻 → ∀𝑓 𝑤 ∈ 𝐻) |
5 | 4 | nfcii 2888 | . . . . . 6 ⊢ Ⅎ𝑓𝐻 |
6 | 5 | nfuni 4916 | . . . . 5 ⊢ Ⅎ𝑓∪ 𝐻 |
7 | 2, 6 | nfcxfr 2902 | . . . 4 ⊢ Ⅎ𝑓𝑃 |
8 | nfcv 2904 | . . . . . 6 ⊢ Ⅎ𝑓𝑥 | |
9 | nfcv 2904 | . . . . . . 7 ⊢ Ⅎ𝑓𝐺 | |
10 | bnj1466.11 | . . . . . . . 8 ⊢ 𝑍 = ⟨𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))⟩ | |
11 | nfcv 2904 | . . . . . . . . . 10 ⊢ Ⅎ𝑓 pred(𝑥, 𝐴, 𝑅) | |
12 | 7, 11 | nfres 5984 | . . . . . . . . 9 ⊢ Ⅎ𝑓(𝑃 ↾ pred(𝑥, 𝐴, 𝑅)) |
13 | 8, 12 | nfop 4890 | . . . . . . . 8 ⊢ Ⅎ𝑓⟨𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))⟩ |
14 | 10, 13 | nfcxfr 2902 | . . . . . . 7 ⊢ Ⅎ𝑓𝑍 |
15 | 9, 14 | nffv 6902 | . . . . . 6 ⊢ Ⅎ𝑓(𝐺‘𝑍) |
16 | 8, 15 | nfop 4890 | . . . . 5 ⊢ Ⅎ𝑓⟨𝑥, (𝐺‘𝑍)⟩ |
17 | 16 | nfsn 4712 | . . . 4 ⊢ Ⅎ𝑓{⟨𝑥, (𝐺‘𝑍)⟩} |
18 | 7, 17 | nfun 4166 | . . 3 ⊢ Ⅎ𝑓(𝑃 ∪ {⟨𝑥, (𝐺‘𝑍)⟩}) |
19 | 1, 18 | nfcxfr 2902 | . 2 ⊢ Ⅎ𝑓𝑄 |
20 | 19 | nfcrii 2896 | 1 ⊢ (𝑤 ∈ 𝑄 → ∀𝑓 𝑤 ∈ 𝑄) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 397 ∧ w3a 1088 ∀wal 1540 = wceq 1542 ∃wex 1782 ∈ wcel 2107 {cab 2710 ≠ wne 2941 ∀wral 3062 ∃wrex 3071 {crab 3433 [wsbc 3778 ∪ cun 3947 ⊆ wss 3949 ∅c0 4323 {csn 4629 ⟨cop 4635 ∪ cuni 4909 class class class wbr 5149 dom cdm 5677 ↾ cres 5679 Fn wfn 6539 ‘cfv 6544 predc-bnj14 33699 FrSe w-bnj15 33703 trClc-bnj18 33705 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-xp 5683 df-res 5689 df-iota 6496 df-fv 6552 |
This theorem is referenced by: bnj1463 34066 bnj1491 34068 |
Copyright terms: Public domain | W3C validator |