Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1466 Structured version   Visualization version   GIF version

Theorem bnj1466 33082
Description: Technical lemma for bnj60 33091. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1466.1 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
bnj1466.2 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
bnj1466.3 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
bnj1466.4 (𝜏 ↔ (𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))
bnj1466.5 𝐷 = {𝑥𝐴 ∣ ¬ ∃𝑓𝜏}
bnj1466.6 (𝜓 ↔ (𝑅 FrSe 𝐴𝐷 ≠ ∅))
bnj1466.7 (𝜒 ↔ (𝜓𝑥𝐷 ∧ ∀𝑦𝐷 ¬ 𝑦𝑅𝑥))
bnj1466.8 (𝜏′[𝑦 / 𝑥]𝜏)
bnj1466.9 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′}
bnj1466.10 𝑃 = 𝐻
bnj1466.11 𝑍 = ⟨𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))⟩
bnj1466.12 𝑄 = (𝑃 ∪ {⟨𝑥, (𝐺𝑍)⟩})
Assertion
Ref Expression
bnj1466 (𝑤𝑄 → ∀𝑓 𝑤𝑄)
Distinct variable groups:   𝐴,𝑓,𝑤   𝑓,𝐺,𝑤   𝑤,𝐻   𝑤,𝑃   𝑅,𝑓,𝑤   𝑤,𝑍   𝑥,𝑓,𝑤
Allowed substitution hints:   𝜓(𝑥,𝑦,𝑤,𝑓,𝑑)   𝜒(𝑥,𝑦,𝑤,𝑓,𝑑)   𝜏(𝑥,𝑦,𝑤,𝑓,𝑑)   𝐴(𝑥,𝑦,𝑑)   𝐵(𝑥,𝑦,𝑤,𝑓,𝑑)   𝐶(𝑥,𝑦,𝑤,𝑓,𝑑)   𝐷(𝑥,𝑦,𝑤,𝑓,𝑑)   𝑃(𝑥,𝑦,𝑓,𝑑)   𝑄(𝑥,𝑦,𝑤,𝑓,𝑑)   𝑅(𝑥,𝑦,𝑑)   𝐺(𝑥,𝑦,𝑑)   𝐻(𝑥,𝑦,𝑓,𝑑)   𝑌(𝑥,𝑦,𝑤,𝑓,𝑑)   𝑍(𝑥,𝑦,𝑓,𝑑)   𝜏′(𝑥,𝑦,𝑤,𝑓,𝑑)

Proof of Theorem bnj1466
StepHypRef Expression
1 bnj1466.12 . . 3 𝑄 = (𝑃 ∪ {⟨𝑥, (𝐺𝑍)⟩})
2 bnj1466.10 . . . . 5 𝑃 = 𝐻
3 bnj1466.9 . . . . . . . 8 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′}
43bnj1317 32850 . . . . . . 7 (𝑤𝐻 → ∀𝑓 𝑤𝐻)
54nfcii 2888 . . . . . 6 𝑓𝐻
65nfuni 4851 . . . . 5 𝑓 𝐻
72, 6nfcxfr 2902 . . . 4 𝑓𝑃
8 nfcv 2904 . . . . . 6 𝑓𝑥
9 nfcv 2904 . . . . . . 7 𝑓𝐺
10 bnj1466.11 . . . . . . . 8 𝑍 = ⟨𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))⟩
11 nfcv 2904 . . . . . . . . . 10 𝑓 pred(𝑥, 𝐴, 𝑅)
127, 11nfres 5905 . . . . . . . . 9 𝑓(𝑃 ↾ pred(𝑥, 𝐴, 𝑅))
138, 12nfop 4825 . . . . . . . 8 𝑓𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))⟩
1410, 13nfcxfr 2902 . . . . . . 7 𝑓𝑍
159, 14nffv 6814 . . . . . 6 𝑓(𝐺𝑍)
168, 15nfop 4825 . . . . 5 𝑓𝑥, (𝐺𝑍)⟩
1716nfsn 4647 . . . 4 𝑓{⟨𝑥, (𝐺𝑍)⟩}
187, 17nfun 4105 . . 3 𝑓(𝑃 ∪ {⟨𝑥, (𝐺𝑍)⟩})
191, 18nfcxfr 2902 . 2 𝑓𝑄
2019nfcrii 2896 1 (𝑤𝑄 → ∀𝑓 𝑤𝑄)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  w3a 1087  wal 1537   = wceq 1539  wex 1779  wcel 2104  {cab 2713  wne 2940  wral 3061  wrex 3070  {crab 3330  [wsbc 3721  cun 3890  wss 3892  c0 4262  {csn 4565  cop 4571   cuni 4844   class class class wbr 5081  dom cdm 5600  cres 5602   Fn wfn 6453  cfv 6458   predc-bnj14 32716   FrSe w-bnj15 32720   trClc-bnj18 32722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ral 3062  df-rex 3071  df-rab 3333  df-v 3439  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-br 5082  df-opab 5144  df-xp 5606  df-res 5612  df-iota 6410  df-fv 6466
This theorem is referenced by:  bnj1463  33084  bnj1491  33086
  Copyright terms: Public domain W3C validator