| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1307 | Structured version Visualization version GIF version | ||
| Description: Technical lemma for bnj60 35059. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj1307.1 | ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} |
| bnj1307.2 | ⊢ (𝑤 ∈ 𝐵 → ∀𝑥 𝑤 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| bnj1307 | ⊢ (𝑤 ∈ 𝐶 → ∀𝑥 𝑤 ∈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj1307.1 | . . 3 ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} | |
| 2 | bnj1307.2 | . . . . . 6 ⊢ (𝑤 ∈ 𝐵 → ∀𝑥 𝑤 ∈ 𝐵) | |
| 3 | 2 | nfcii 2881 | . . . . 5 ⊢ Ⅎ𝑥𝐵 |
| 4 | nfv 1914 | . . . . . 6 ⊢ Ⅎ𝑥 𝑓 Fn 𝑑 | |
| 5 | nfra1 3262 | . . . . . 6 ⊢ Ⅎ𝑥∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌) | |
| 6 | 4, 5 | nfan 1899 | . . . . 5 ⊢ Ⅎ𝑥(𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌)) |
| 7 | 3, 6 | nfrexw 3289 | . . . 4 ⊢ Ⅎ𝑥∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌)) |
| 8 | 7 | nfab 2898 | . . 3 ⊢ Ⅎ𝑥{𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} |
| 9 | 1, 8 | nfcxfr 2890 | . 2 ⊢ Ⅎ𝑥𝐶 |
| 10 | 9 | nfcrii 2887 | 1 ⊢ (𝑤 ∈ 𝐶 → ∀𝑥 𝑤 ∈ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1538 = wceq 1540 ∈ wcel 2109 {cab 2708 ∀wral 3045 ∃wrex 3054 Fn wfn 6509 ‘cfv 6514 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 |
| This theorem is referenced by: bnj1311 35021 bnj1373 35027 bnj1498 35058 bnj1525 35066 bnj1523 35068 |
| Copyright terms: Public domain | W3C validator |