Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1307 | Structured version Visualization version GIF version |
Description: Technical lemma for bnj60 33339. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj1307.1 | ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} |
bnj1307.2 | ⊢ (𝑤 ∈ 𝐵 → ∀𝑥 𝑤 ∈ 𝐵) |
Ref | Expression |
---|---|
bnj1307 | ⊢ (𝑤 ∈ 𝐶 → ∀𝑥 𝑤 ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1307.1 | . . 3 ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} | |
2 | bnj1307.2 | . . . . . 6 ⊢ (𝑤 ∈ 𝐵 → ∀𝑥 𝑤 ∈ 𝐵) | |
3 | 2 | nfcii 2889 | . . . . 5 ⊢ Ⅎ𝑥𝐵 |
4 | nfv 1917 | . . . . . 6 ⊢ Ⅎ𝑥 𝑓 Fn 𝑑 | |
5 | nfra1 3264 | . . . . . 6 ⊢ Ⅎ𝑥∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌) | |
6 | 4, 5 | nfan 1902 | . . . . 5 ⊢ Ⅎ𝑥(𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌)) |
7 | 3, 6 | nfrexw 3293 | . . . 4 ⊢ Ⅎ𝑥∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌)) |
8 | 7 | nfab 2911 | . . 3 ⊢ Ⅎ𝑥{𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} |
9 | 1, 8 | nfcxfr 2903 | . 2 ⊢ Ⅎ𝑥𝐶 |
10 | 9 | nfcrii 2897 | 1 ⊢ (𝑤 ∈ 𝐶 → ∀𝑥 𝑤 ∈ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∀wal 1539 = wceq 1541 ∈ wcel 2106 {cab 2714 ∀wral 3062 ∃wrex 3071 Fn wfn 6479 ‘cfv 6484 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-tru 1544 df-ex 1782 df-nf 1786 df-sb 2068 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ral 3063 df-rex 3072 |
This theorem is referenced by: bnj1311 33301 bnj1373 33307 bnj1498 33338 bnj1525 33346 bnj1523 33348 |
Copyright terms: Public domain | W3C validator |