Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1307 Structured version   Visualization version   GIF version

Theorem bnj1307 33692
Description: Technical lemma for bnj60 33731. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1307.1 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
bnj1307.2 (𝑤𝐵 → ∀𝑥 𝑤𝐵)
Assertion
Ref Expression
bnj1307 (𝑤𝐶 → ∀𝑥 𝑤𝐶)
Distinct variable groups:   𝑤,𝐵   𝑤,𝑑,𝑥   𝑥,𝑓
Allowed substitution hints:   𝐵(𝑥,𝑓,𝑑)   𝐶(𝑥,𝑤,𝑓,𝑑)   𝐺(𝑥,𝑤,𝑓,𝑑)   𝑌(𝑥,𝑤,𝑓,𝑑)

Proof of Theorem bnj1307
StepHypRef Expression
1 bnj1307.1 . . 3 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
2 bnj1307.2 . . . . . 6 (𝑤𝐵 → ∀𝑥 𝑤𝐵)
32nfcii 2888 . . . . 5 𝑥𝐵
4 nfv 1918 . . . . . 6 𝑥 𝑓 Fn 𝑑
5 nfra1 3266 . . . . . 6 𝑥𝑥𝑑 (𝑓𝑥) = (𝐺𝑌)
64, 5nfan 1903 . . . . 5 𝑥(𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))
73, 6nfrexw 3295 . . . 4 𝑥𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))
87nfab 2910 . . 3 𝑥{𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
91, 8nfcxfr 2902 . 2 𝑥𝐶
109nfcrii 2896 1 (𝑤𝐶 → ∀𝑥 𝑤𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  wal 1540   = wceq 1542  wcel 2107  {cab 2710  wral 3061  wrex 3070   Fn wfn 6492  cfv 6497
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-tru 1545  df-ex 1783  df-nf 1787  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ral 3062  df-rex 3071
This theorem is referenced by:  bnj1311  33693  bnj1373  33699  bnj1498  33730  bnj1525  33738  bnj1523  33740
  Copyright terms: Public domain W3C validator