| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1467 | Structured version Visualization version GIF version | ||
| Description: Technical lemma for bnj60 35098. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj1467.1 | ⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} |
| bnj1467.2 | ⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 |
| bnj1467.3 | ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} |
| bnj1467.4 | ⊢ (𝜏 ↔ (𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))) |
| bnj1467.5 | ⊢ 𝐷 = {𝑥 ∈ 𝐴 ∣ ¬ ∃𝑓𝜏} |
| bnj1467.6 | ⊢ (𝜓 ↔ (𝑅 FrSe 𝐴 ∧ 𝐷 ≠ ∅)) |
| bnj1467.7 | ⊢ (𝜒 ↔ (𝜓 ∧ 𝑥 ∈ 𝐷 ∧ ∀𝑦 ∈ 𝐷 ¬ 𝑦𝑅𝑥)) |
| bnj1467.8 | ⊢ (𝜏′ ↔ [𝑦 / 𝑥]𝜏) |
| bnj1467.9 | ⊢ 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′} |
| bnj1467.10 | ⊢ 𝑃 = ∪ 𝐻 |
| bnj1467.11 | ⊢ 𝑍 = 〈𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))〉 |
| bnj1467.12 | ⊢ 𝑄 = (𝑃 ∪ {〈𝑥, (𝐺‘𝑍)〉}) |
| Ref | Expression |
|---|---|
| bnj1467 | ⊢ (𝑤 ∈ 𝑄 → ∀𝑑 𝑤 ∈ 𝑄) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj1467.12 | . . 3 ⊢ 𝑄 = (𝑃 ∪ {〈𝑥, (𝐺‘𝑍)〉}) | |
| 2 | bnj1467.10 | . . . . 5 ⊢ 𝑃 = ∪ 𝐻 | |
| 3 | bnj1467.9 | . . . . . . 7 ⊢ 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′} | |
| 4 | nfcv 2899 | . . . . . . . . 9 ⊢ Ⅎ𝑑 pred(𝑥, 𝐴, 𝑅) | |
| 5 | bnj1467.8 | . . . . . . . . . 10 ⊢ (𝜏′ ↔ [𝑦 / 𝑥]𝜏) | |
| 6 | nfcv 2899 | . . . . . . . . . . 11 ⊢ Ⅎ𝑑𝑦 | |
| 7 | bnj1467.4 | . . . . . . . . . . . 12 ⊢ (𝜏 ↔ (𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))) | |
| 8 | bnj1467.3 | . . . . . . . . . . . . . . 15 ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} | |
| 9 | nfre1 3271 | . . . . . . . . . . . . . . . 16 ⊢ Ⅎ𝑑∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌)) | |
| 10 | 9 | nfab 2905 | . . . . . . . . . . . . . . 15 ⊢ Ⅎ𝑑{𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} |
| 11 | 8, 10 | nfcxfr 2897 | . . . . . . . . . . . . . 14 ⊢ Ⅎ𝑑𝐶 |
| 12 | 11 | nfcri 2891 | . . . . . . . . . . . . 13 ⊢ Ⅎ𝑑 𝑓 ∈ 𝐶 |
| 13 | nfv 1914 | . . . . . . . . . . . . 13 ⊢ Ⅎ𝑑dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)) | |
| 14 | 12, 13 | nfan 1899 | . . . . . . . . . . . 12 ⊢ Ⅎ𝑑(𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))) |
| 15 | 7, 14 | nfxfr 1853 | . . . . . . . . . . 11 ⊢ Ⅎ𝑑𝜏 |
| 16 | 6, 15 | nfsbcw 3792 | . . . . . . . . . 10 ⊢ Ⅎ𝑑[𝑦 / 𝑥]𝜏 |
| 17 | 5, 16 | nfxfr 1853 | . . . . . . . . 9 ⊢ Ⅎ𝑑𝜏′ |
| 18 | 4, 17 | nfrexw 3297 | . . . . . . . 8 ⊢ Ⅎ𝑑∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′ |
| 19 | 18 | nfab 2905 | . . . . . . 7 ⊢ Ⅎ𝑑{𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′} |
| 20 | 3, 19 | nfcxfr 2897 | . . . . . 6 ⊢ Ⅎ𝑑𝐻 |
| 21 | 20 | nfuni 4895 | . . . . 5 ⊢ Ⅎ𝑑∪ 𝐻 |
| 22 | 2, 21 | nfcxfr 2897 | . . . 4 ⊢ Ⅎ𝑑𝑃 |
| 23 | nfcv 2899 | . . . . . 6 ⊢ Ⅎ𝑑𝑥 | |
| 24 | nfcv 2899 | . . . . . . 7 ⊢ Ⅎ𝑑𝐺 | |
| 25 | bnj1467.11 | . . . . . . . 8 ⊢ 𝑍 = 〈𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))〉 | |
| 26 | 22, 4 | nfres 5973 | . . . . . . . . 9 ⊢ Ⅎ𝑑(𝑃 ↾ pred(𝑥, 𝐴, 𝑅)) |
| 27 | 23, 26 | nfop 4870 | . . . . . . . 8 ⊢ Ⅎ𝑑〈𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))〉 |
| 28 | 25, 27 | nfcxfr 2897 | . . . . . . 7 ⊢ Ⅎ𝑑𝑍 |
| 29 | 24, 28 | nffv 6891 | . . . . . 6 ⊢ Ⅎ𝑑(𝐺‘𝑍) |
| 30 | 23, 29 | nfop 4870 | . . . . 5 ⊢ Ⅎ𝑑〈𝑥, (𝐺‘𝑍)〉 |
| 31 | 30 | nfsn 4688 | . . . 4 ⊢ Ⅎ𝑑{〈𝑥, (𝐺‘𝑍)〉} |
| 32 | 22, 31 | nfun 4150 | . . 3 ⊢ Ⅎ𝑑(𝑃 ∪ {〈𝑥, (𝐺‘𝑍)〉}) |
| 33 | 1, 32 | nfcxfr 2897 | . 2 ⊢ Ⅎ𝑑𝑄 |
| 34 | 33 | nfcrii 2894 | 1 ⊢ (𝑤 ∈ 𝑄 → ∀𝑑 𝑤 ∈ 𝑄) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∀wal 1538 = wceq 1540 ∃wex 1779 ∈ wcel 2109 {cab 2714 ≠ wne 2933 ∀wral 3052 ∃wrex 3061 {crab 3420 [wsbc 3770 ∪ cun 3929 ⊆ wss 3931 ∅c0 4313 {csn 4606 〈cop 4612 ∪ cuni 4888 class class class wbr 5124 dom cdm 5659 ↾ cres 5661 Fn wfn 6531 ‘cfv 6536 predc-bnj14 34724 FrSe w-bnj15 34728 trClc-bnj18 34730 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-xp 5665 df-res 5671 df-iota 6489 df-fv 6544 |
| This theorem is referenced by: bnj1463 35091 |
| Copyright terms: Public domain | W3C validator |