![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfcsb | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for substitution into a class. Usage of this theorem is discouraged because it depends on ax-13 2363. Use the weaker nfcsbw 3913 when possible. (Contributed by Mario Carneiro, 12-Oct-2016.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nfcsb.1 | ⊢ Ⅎ𝑥𝐴 |
nfcsb.2 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
nfcsb | ⊢ Ⅎ𝑥⦋𝐴 / 𝑦⦌𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nftru 1798 | . . 3 ⊢ Ⅎ𝑦⊤ | |
2 | nfcsb.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
3 | 2 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐴) |
4 | nfcsb.2 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
5 | 4 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐵) |
6 | 1, 3, 5 | nfcsbd 3912 | . 2 ⊢ (⊤ → Ⅎ𝑥⦋𝐴 / 𝑦⦌𝐵) |
7 | 6 | mptru 1540 | 1 ⊢ Ⅎ𝑥⦋𝐴 / 𝑦⦌𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ⊤wtru 1534 Ⅎwnfc 2875 ⦋csb 3886 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-13 2363 ax-ext 2695 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-tru 1536 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-sbc 3771 df-csb 3887 |
This theorem is referenced by: cbvralcsf 3931 cbvreucsf 3933 cbvrabcsf 3934 elfvmptrab1 7016 elovmporab1 7648 |
Copyright terms: Public domain | W3C validator |