MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfcsb Structured version   Visualization version   GIF version

Theorem nfcsb 3906
Description: Bound-variable hypothesis builder for substitution into a class. Usage of this theorem is discouraged because it depends on ax-13 2377. Use the weaker nfcsbw 3905 when possible. (Contributed by Mario Carneiro, 12-Oct-2016.) (New usage is discouraged.)
Hypotheses
Ref Expression
nfcsb.1 𝑥𝐴
nfcsb.2 𝑥𝐵
Assertion
Ref Expression
nfcsb 𝑥𝐴 / 𝑦𝐵

Proof of Theorem nfcsb
StepHypRef Expression
1 nftru 1804 . . 3 𝑦
2 nfcsb.1 . . . 4 𝑥𝐴
32a1i 11 . . 3 (⊤ → 𝑥𝐴)
4 nfcsb.2 . . . 4 𝑥𝐵
54a1i 11 . . 3 (⊤ → 𝑥𝐵)
61, 3, 5nfcsbd 3904 . 2 (⊤ → 𝑥𝐴 / 𝑦𝐵)
76mptru 1547 1 𝑥𝐴 / 𝑦𝐵
Colors of variables: wff setvar class
Syntax hints:  wtru 1541  wnfc 2884  csb 3879
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-13 2377  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-sbc 3771  df-csb 3880
This theorem is referenced by:  cbvralcsf  3921  cbvreucsf  3923  cbvrabcsf  3924  elfvmptrab1  7019  elovmporab1  7660
  Copyright terms: Public domain W3C validator