![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfcsb | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for substitution into a class. Usage of this theorem is discouraged because it depends on ax-13 2370. Use the weaker nfcsbw 3920 when possible. (Contributed by Mario Carneiro, 12-Oct-2016.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nfcsb.1 | ⊢ Ⅎ𝑥𝐴 |
nfcsb.2 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
nfcsb | ⊢ Ⅎ𝑥⦋𝐴 / 𝑦⦌𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nftru 1805 | . . 3 ⊢ Ⅎ𝑦⊤ | |
2 | nfcsb.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
3 | 2 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐴) |
4 | nfcsb.2 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
5 | 4 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐵) |
6 | 1, 3, 5 | nfcsbd 3919 | . 2 ⊢ (⊤ → Ⅎ𝑥⦋𝐴 / 𝑦⦌𝐵) |
7 | 6 | mptru 1547 | 1 ⊢ Ⅎ𝑥⦋𝐴 / 𝑦⦌𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ⊤wtru 1541 Ⅎwnfc 2882 ⦋csb 3893 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-13 2370 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-tru 1543 df-ex 1781 df-nf 1785 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-sbc 3778 df-csb 3894 |
This theorem is referenced by: cbvralcsf 3938 cbvreucsf 3940 cbvrabcsf 3941 elfvmptrab1 7025 elovmporab1 7658 |
Copyright terms: Public domain | W3C validator |