Proof of Theorem elovmporab1
Step | Hyp | Ref
| Expression |
1 | | elovmporab1.o |
. . 3
⊢ 𝑂 = (𝑥 ∈ V, 𝑦 ∈ V ↦ {𝑧 ∈ ⦋𝑥 / 𝑚⦌𝑀 ∣ 𝜑}) |
2 | 1 | elmpocl 7489 |
. 2
⊢ (𝑍 ∈ (𝑋𝑂𝑌) → (𝑋 ∈ V ∧ 𝑌 ∈ V)) |
3 | 1 | a1i 11 |
. . . . 5
⊢ ((𝑋 ∈ V ∧ 𝑌 ∈ V) → 𝑂 = (𝑥 ∈ V, 𝑦 ∈ V ↦ {𝑧 ∈ ⦋𝑥 / 𝑚⦌𝑀 ∣ 𝜑})) |
4 | | csbeq1 3831 |
. . . . . . 7
⊢ (𝑥 = 𝑋 → ⦋𝑥 / 𝑚⦌𝑀 = ⦋𝑋 / 𝑚⦌𝑀) |
5 | 4 | ad2antrl 724 |
. . . . . 6
⊢ (((𝑋 ∈ V ∧ 𝑌 ∈ V) ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → ⦋𝑥 / 𝑚⦌𝑀 = ⦋𝑋 / 𝑚⦌𝑀) |
6 | | sbceq1a 3722 |
. . . . . . . 8
⊢ (𝑦 = 𝑌 → (𝜑 ↔ [𝑌 / 𝑦]𝜑)) |
7 | | sbceq1a 3722 |
. . . . . . . 8
⊢ (𝑥 = 𝑋 → ([𝑌 / 𝑦]𝜑 ↔ [𝑋 / 𝑥][𝑌 / 𝑦]𝜑)) |
8 | 6, 7 | sylan9bbr 510 |
. . . . . . 7
⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (𝜑 ↔ [𝑋 / 𝑥][𝑌 / 𝑦]𝜑)) |
9 | 8 | adantl 481 |
. . . . . 6
⊢ (((𝑋 ∈ V ∧ 𝑌 ∈ V) ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → (𝜑 ↔ [𝑋 / 𝑥][𝑌 / 𝑦]𝜑)) |
10 | 5, 9 | rabeqbidv 3410 |
. . . . 5
⊢ (((𝑋 ∈ V ∧ 𝑌 ∈ V) ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → {𝑧 ∈ ⦋𝑥 / 𝑚⦌𝑀 ∣ 𝜑} = {𝑧 ∈ ⦋𝑋 / 𝑚⦌𝑀 ∣ [𝑋 / 𝑥][𝑌 / 𝑦]𝜑}) |
11 | | eqidd 2739 |
. . . . 5
⊢ (((𝑋 ∈ V ∧ 𝑌 ∈ V) ∧ 𝑥 = 𝑋) → V = V) |
12 | | simpl 482 |
. . . . 5
⊢ ((𝑋 ∈ V ∧ 𝑌 ∈ V) → 𝑋 ∈ V) |
13 | | simpr 484 |
. . . . 5
⊢ ((𝑋 ∈ V ∧ 𝑌 ∈ V) → 𝑌 ∈ V) |
14 | | elovmporab1.v |
. . . . . 6
⊢ ((𝑋 ∈ V ∧ 𝑌 ∈ V) →
⦋𝑋 / 𝑚⦌𝑀 ∈ V) |
15 | | rabexg 5250 |
. . . . . 6
⊢
(⦋𝑋 /
𝑚⦌𝑀 ∈ V → {𝑧 ∈ ⦋𝑋 / 𝑚⦌𝑀 ∣ [𝑋 / 𝑥][𝑌 / 𝑦]𝜑} ∈ V) |
16 | 14, 15 | syl 17 |
. . . . 5
⊢ ((𝑋 ∈ V ∧ 𝑌 ∈ V) → {𝑧 ∈ ⦋𝑋 / 𝑚⦌𝑀 ∣ [𝑋 / 𝑥][𝑌 / 𝑦]𝜑} ∈ V) |
17 | | nfcv 2906 |
. . . . . . 7
⊢
Ⅎ𝑥𝑋 |
18 | 17 | nfel1 2922 |
. . . . . 6
⊢
Ⅎ𝑥 𝑋 ∈ V |
19 | | nfcv 2906 |
. . . . . . 7
⊢
Ⅎ𝑥𝑌 |
20 | 19 | nfel1 2922 |
. . . . . 6
⊢
Ⅎ𝑥 𝑌 ∈ V |
21 | 18, 20 | nfan 1903 |
. . . . 5
⊢
Ⅎ𝑥(𝑋 ∈ V ∧ 𝑌 ∈ V) |
22 | | nfcv 2906 |
. . . . . . 7
⊢
Ⅎ𝑦𝑋 |
23 | 22 | nfel1 2922 |
. . . . . 6
⊢
Ⅎ𝑦 𝑋 ∈ V |
24 | | nfcv 2906 |
. . . . . . 7
⊢
Ⅎ𝑦𝑌 |
25 | 24 | nfel1 2922 |
. . . . . 6
⊢
Ⅎ𝑦 𝑌 ∈ V |
26 | 23, 25 | nfan 1903 |
. . . . 5
⊢
Ⅎ𝑦(𝑋 ∈ V ∧ 𝑌 ∈ V) |
27 | | nfsbc1v 3731 |
. . . . . 6
⊢
Ⅎ𝑥[𝑋 / 𝑥][𝑌 / 𝑦]𝜑 |
28 | | nfcv 2906 |
. . . . . . 7
⊢
Ⅎ𝑥𝑀 |
29 | 17, 28 | nfcsb 3856 |
. . . . . 6
⊢
Ⅎ𝑥⦋𝑋 / 𝑚⦌𝑀 |
30 | 27, 29 | nfrab 3312 |
. . . . 5
⊢
Ⅎ𝑥{𝑧 ∈ ⦋𝑋 / 𝑚⦌𝑀 ∣ [𝑋 / 𝑥][𝑌 / 𝑦]𝜑} |
31 | | nfsbc1v 3731 |
. . . . . . 7
⊢
Ⅎ𝑦[𝑌 / 𝑦]𝜑 |
32 | 22, 31 | nfsbc 3736 |
. . . . . 6
⊢
Ⅎ𝑦[𝑋 / 𝑥][𝑌 / 𝑦]𝜑 |
33 | | nfcv 2906 |
. . . . . . 7
⊢
Ⅎ𝑦𝑀 |
34 | 22, 33 | nfcsb 3856 |
. . . . . 6
⊢
Ⅎ𝑦⦋𝑋 / 𝑚⦌𝑀 |
35 | 32, 34 | nfrab 3312 |
. . . . 5
⊢
Ⅎ𝑦{𝑧 ∈ ⦋𝑋 / 𝑚⦌𝑀 ∣ [𝑋 / 𝑥][𝑌 / 𝑦]𝜑} |
36 | 3, 10, 11, 12, 13, 16, 21, 26, 22, 19, 30, 35 | ovmpodxf 7401 |
. . . 4
⊢ ((𝑋 ∈ V ∧ 𝑌 ∈ V) → (𝑋𝑂𝑌) = {𝑧 ∈ ⦋𝑋 / 𝑚⦌𝑀 ∣ [𝑋 / 𝑥][𝑌 / 𝑦]𝜑}) |
37 | 36 | eleq2d 2824 |
. . 3
⊢ ((𝑋 ∈ V ∧ 𝑌 ∈ V) → (𝑍 ∈ (𝑋𝑂𝑌) ↔ 𝑍 ∈ {𝑧 ∈ ⦋𝑋 / 𝑚⦌𝑀 ∣ [𝑋 / 𝑥][𝑌 / 𝑦]𝜑})) |
38 | | df-3an 1087 |
. . . . 5
⊢ ((𝑋 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ ⦋𝑋 / 𝑚⦌𝑀) ↔ ((𝑋 ∈ V ∧ 𝑌 ∈ V) ∧ 𝑍 ∈ ⦋𝑋 / 𝑚⦌𝑀)) |
39 | 38 | simplbi2com 502 |
. . . 4
⊢ (𝑍 ∈ ⦋𝑋 / 𝑚⦌𝑀 → ((𝑋 ∈ V ∧ 𝑌 ∈ V) → (𝑋 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ ⦋𝑋 / 𝑚⦌𝑀))) |
40 | | elrabi 3611 |
. . . 4
⊢ (𝑍 ∈ {𝑧 ∈ ⦋𝑋 / 𝑚⦌𝑀 ∣ [𝑋 / 𝑥][𝑌 / 𝑦]𝜑} → 𝑍 ∈ ⦋𝑋 / 𝑚⦌𝑀) |
41 | 39, 40 | syl11 33 |
. . 3
⊢ ((𝑋 ∈ V ∧ 𝑌 ∈ V) → (𝑍 ∈ {𝑧 ∈ ⦋𝑋 / 𝑚⦌𝑀 ∣ [𝑋 / 𝑥][𝑌 / 𝑦]𝜑} → (𝑋 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ ⦋𝑋 / 𝑚⦌𝑀))) |
42 | 37, 41 | sylbid 239 |
. 2
⊢ ((𝑋 ∈ V ∧ 𝑌 ∈ V) → (𝑍 ∈ (𝑋𝑂𝑌) → (𝑋 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ ⦋𝑋 / 𝑚⦌𝑀))) |
43 | 2, 42 | mpcom 38 |
1
⊢ (𝑍 ∈ (𝑋𝑂𝑌) → (𝑋 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ ⦋𝑋 / 𝑚⦌𝑀)) |