Proof of Theorem elovmporab1
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | elovmporab1.o | . . 3
⊢ 𝑂 = (𝑥 ∈ V, 𝑦 ∈ V ↦ {𝑧 ∈ ⦋𝑥 / 𝑚⦌𝑀 ∣ 𝜑}) | 
| 2 | 1 | elmpocl 7674 | . 2
⊢ (𝑍 ∈ (𝑋𝑂𝑌) → (𝑋 ∈ V ∧ 𝑌 ∈ V)) | 
| 3 | 1 | a1i 11 | . . . . 5
⊢ ((𝑋 ∈ V ∧ 𝑌 ∈ V) → 𝑂 = (𝑥 ∈ V, 𝑦 ∈ V ↦ {𝑧 ∈ ⦋𝑥 / 𝑚⦌𝑀 ∣ 𝜑})) | 
| 4 |  | csbeq1 3902 | . . . . . . 7
⊢ (𝑥 = 𝑋 → ⦋𝑥 / 𝑚⦌𝑀 = ⦋𝑋 / 𝑚⦌𝑀) | 
| 5 | 4 | ad2antrl 728 | . . . . . 6
⊢ (((𝑋 ∈ V ∧ 𝑌 ∈ V) ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → ⦋𝑥 / 𝑚⦌𝑀 = ⦋𝑋 / 𝑚⦌𝑀) | 
| 6 |  | sbceq1a 3799 | . . . . . . . 8
⊢ (𝑦 = 𝑌 → (𝜑 ↔ [𝑌 / 𝑦]𝜑)) | 
| 7 |  | sbceq1a 3799 | . . . . . . . 8
⊢ (𝑥 = 𝑋 → ([𝑌 / 𝑦]𝜑 ↔ [𝑋 / 𝑥][𝑌 / 𝑦]𝜑)) | 
| 8 | 6, 7 | sylan9bbr 510 | . . . . . . 7
⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (𝜑 ↔ [𝑋 / 𝑥][𝑌 / 𝑦]𝜑)) | 
| 9 | 8 | adantl 481 | . . . . . 6
⊢ (((𝑋 ∈ V ∧ 𝑌 ∈ V) ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → (𝜑 ↔ [𝑋 / 𝑥][𝑌 / 𝑦]𝜑)) | 
| 10 | 5, 9 | rabeqbidv 3455 | . . . . 5
⊢ (((𝑋 ∈ V ∧ 𝑌 ∈ V) ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → {𝑧 ∈ ⦋𝑥 / 𝑚⦌𝑀 ∣ 𝜑} = {𝑧 ∈ ⦋𝑋 / 𝑚⦌𝑀 ∣ [𝑋 / 𝑥][𝑌 / 𝑦]𝜑}) | 
| 11 |  | eqidd 2738 | . . . . 5
⊢ (((𝑋 ∈ V ∧ 𝑌 ∈ V) ∧ 𝑥 = 𝑋) → V = V) | 
| 12 |  | simpl 482 | . . . . 5
⊢ ((𝑋 ∈ V ∧ 𝑌 ∈ V) → 𝑋 ∈ V) | 
| 13 |  | simpr 484 | . . . . 5
⊢ ((𝑋 ∈ V ∧ 𝑌 ∈ V) → 𝑌 ∈ V) | 
| 14 |  | elovmporab1.v | . . . . . 6
⊢ ((𝑋 ∈ V ∧ 𝑌 ∈ V) →
⦋𝑋 / 𝑚⦌𝑀 ∈ V) | 
| 15 |  | rabexg 5337 | . . . . . 6
⊢
(⦋𝑋 /
𝑚⦌𝑀 ∈ V → {𝑧 ∈ ⦋𝑋 / 𝑚⦌𝑀 ∣ [𝑋 / 𝑥][𝑌 / 𝑦]𝜑} ∈ V) | 
| 16 | 14, 15 | syl 17 | . . . . 5
⊢ ((𝑋 ∈ V ∧ 𝑌 ∈ V) → {𝑧 ∈ ⦋𝑋 / 𝑚⦌𝑀 ∣ [𝑋 / 𝑥][𝑌 / 𝑦]𝜑} ∈ V) | 
| 17 |  | nfcv 2905 | . . . . . . 7
⊢
Ⅎ𝑥𝑋 | 
| 18 | 17 | nfel1 2922 | . . . . . 6
⊢
Ⅎ𝑥 𝑋 ∈ V | 
| 19 |  | nfcv 2905 | . . . . . . 7
⊢
Ⅎ𝑥𝑌 | 
| 20 | 19 | nfel1 2922 | . . . . . 6
⊢
Ⅎ𝑥 𝑌 ∈ V | 
| 21 | 18, 20 | nfan 1899 | . . . . 5
⊢
Ⅎ𝑥(𝑋 ∈ V ∧ 𝑌 ∈ V) | 
| 22 |  | nfcv 2905 | . . . . . . 7
⊢
Ⅎ𝑦𝑋 | 
| 23 | 22 | nfel1 2922 | . . . . . 6
⊢
Ⅎ𝑦 𝑋 ∈ V | 
| 24 |  | nfcv 2905 | . . . . . . 7
⊢
Ⅎ𝑦𝑌 | 
| 25 | 24 | nfel1 2922 | . . . . . 6
⊢
Ⅎ𝑦 𝑌 ∈ V | 
| 26 | 23, 25 | nfan 1899 | . . . . 5
⊢
Ⅎ𝑦(𝑋 ∈ V ∧ 𝑌 ∈ V) | 
| 27 |  | nfsbc1v 3808 | . . . . . 6
⊢
Ⅎ𝑥[𝑋 / 𝑥][𝑌 / 𝑦]𝜑 | 
| 28 |  | nfcv 2905 | . . . . . . 7
⊢
Ⅎ𝑥𝑀 | 
| 29 | 17, 28 | nfcsb 3926 | . . . . . 6
⊢
Ⅎ𝑥⦋𝑋 / 𝑚⦌𝑀 | 
| 30 | 27, 29 | nfrab 3478 | . . . . 5
⊢
Ⅎ𝑥{𝑧 ∈ ⦋𝑋 / 𝑚⦌𝑀 ∣ [𝑋 / 𝑥][𝑌 / 𝑦]𝜑} | 
| 31 |  | nfsbc1v 3808 | . . . . . . 7
⊢
Ⅎ𝑦[𝑌 / 𝑦]𝜑 | 
| 32 | 22, 31 | nfsbc 3813 | . . . . . 6
⊢
Ⅎ𝑦[𝑋 / 𝑥][𝑌 / 𝑦]𝜑 | 
| 33 |  | nfcv 2905 | . . . . . . 7
⊢
Ⅎ𝑦𝑀 | 
| 34 | 22, 33 | nfcsb 3926 | . . . . . 6
⊢
Ⅎ𝑦⦋𝑋 / 𝑚⦌𝑀 | 
| 35 | 32, 34 | nfrab 3478 | . . . . 5
⊢
Ⅎ𝑦{𝑧 ∈ ⦋𝑋 / 𝑚⦌𝑀 ∣ [𝑋 / 𝑥][𝑌 / 𝑦]𝜑} | 
| 36 | 3, 10, 11, 12, 13, 16, 21, 26, 22, 19, 30, 35 | ovmpodxf 7583 | . . . 4
⊢ ((𝑋 ∈ V ∧ 𝑌 ∈ V) → (𝑋𝑂𝑌) = {𝑧 ∈ ⦋𝑋 / 𝑚⦌𝑀 ∣ [𝑋 / 𝑥][𝑌 / 𝑦]𝜑}) | 
| 37 | 36 | eleq2d 2827 | . . 3
⊢ ((𝑋 ∈ V ∧ 𝑌 ∈ V) → (𝑍 ∈ (𝑋𝑂𝑌) ↔ 𝑍 ∈ {𝑧 ∈ ⦋𝑋 / 𝑚⦌𝑀 ∣ [𝑋 / 𝑥][𝑌 / 𝑦]𝜑})) | 
| 38 |  | df-3an 1089 | . . . . 5
⊢ ((𝑋 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ ⦋𝑋 / 𝑚⦌𝑀) ↔ ((𝑋 ∈ V ∧ 𝑌 ∈ V) ∧ 𝑍 ∈ ⦋𝑋 / 𝑚⦌𝑀)) | 
| 39 | 38 | simplbi2com 502 | . . . 4
⊢ (𝑍 ∈ ⦋𝑋 / 𝑚⦌𝑀 → ((𝑋 ∈ V ∧ 𝑌 ∈ V) → (𝑋 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ ⦋𝑋 / 𝑚⦌𝑀))) | 
| 40 |  | elrabi 3687 | . . . 4
⊢ (𝑍 ∈ {𝑧 ∈ ⦋𝑋 / 𝑚⦌𝑀 ∣ [𝑋 / 𝑥][𝑌 / 𝑦]𝜑} → 𝑍 ∈ ⦋𝑋 / 𝑚⦌𝑀) | 
| 41 | 39, 40 | syl11 33 | . . 3
⊢ ((𝑋 ∈ V ∧ 𝑌 ∈ V) → (𝑍 ∈ {𝑧 ∈ ⦋𝑋 / 𝑚⦌𝑀 ∣ [𝑋 / 𝑥][𝑌 / 𝑦]𝜑} → (𝑋 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ ⦋𝑋 / 𝑚⦌𝑀))) | 
| 42 | 37, 41 | sylbid 240 | . 2
⊢ ((𝑋 ∈ V ∧ 𝑌 ∈ V) → (𝑍 ∈ (𝑋𝑂𝑌) → (𝑋 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ ⦋𝑋 / 𝑚⦌𝑀))) | 
| 43 | 2, 42 | mpcom 38 | 1
⊢ (𝑍 ∈ (𝑋𝑂𝑌) → (𝑋 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ ⦋𝑋 / 𝑚⦌𝑀)) |