MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elovmporab1 Structured version   Visualization version   GIF version

Theorem elovmporab1 7653
Description: Implications for the value of an operation, defined by the maps-to notation with a class abstraction as a result, having an element. Here, the base set of the class abstraction depends on the first operand. Usage of this theorem is discouraged because it depends on ax-13 2371. Use the weaker elovmporab1w 7652 when possible. (Contributed by Alexander van der Vekens, 15-Jul-2018.) (New usage is discouraged.)
Hypotheses
Ref Expression
elovmporab1.o 𝑂 = (𝑥 ∈ V, 𝑦 ∈ V ↦ {𝑧𝑥 / 𝑚𝑀𝜑})
elovmporab1.v ((𝑋 ∈ V ∧ 𝑌 ∈ V) → 𝑋 / 𝑚𝑀 ∈ V)
Assertion
Ref Expression
elovmporab1 (𝑍 ∈ (𝑋𝑂𝑌) → (𝑋 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍𝑋 / 𝑚𝑀))
Distinct variable groups:   𝑥,𝑀,𝑦,𝑧   𝑥,𝑋,𝑦,𝑧   𝑥,𝑌,𝑦,𝑧   𝑧,𝑍   𝑧,𝑚
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑚)   𝑀(𝑚)   𝑂(𝑥,𝑦,𝑧,𝑚)   𝑋(𝑚)   𝑌(𝑚)   𝑍(𝑥,𝑦,𝑚)

Proof of Theorem elovmporab1
StepHypRef Expression
1 elovmporab1.o . . 3 𝑂 = (𝑥 ∈ V, 𝑦 ∈ V ↦ {𝑧𝑥 / 𝑚𝑀𝜑})
21elmpocl 7647 . 2 (𝑍 ∈ (𝑋𝑂𝑌) → (𝑋 ∈ V ∧ 𝑌 ∈ V))
31a1i 11 . . . . 5 ((𝑋 ∈ V ∧ 𝑌 ∈ V) → 𝑂 = (𝑥 ∈ V, 𝑦 ∈ V ↦ {𝑧𝑥 / 𝑚𝑀𝜑}))
4 csbeq1 3896 . . . . . . 7 (𝑥 = 𝑋𝑥 / 𝑚𝑀 = 𝑋 / 𝑚𝑀)
54ad2antrl 726 . . . . . 6 (((𝑋 ∈ V ∧ 𝑌 ∈ V) ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → 𝑥 / 𝑚𝑀 = 𝑋 / 𝑚𝑀)
6 sbceq1a 3788 . . . . . . . 8 (𝑦 = 𝑌 → (𝜑[𝑌 / 𝑦]𝜑))
7 sbceq1a 3788 . . . . . . . 8 (𝑥 = 𝑋 → ([𝑌 / 𝑦]𝜑[𝑋 / 𝑥][𝑌 / 𝑦]𝜑))
86, 7sylan9bbr 511 . . . . . . 7 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝜑[𝑋 / 𝑥][𝑌 / 𝑦]𝜑))
98adantl 482 . . . . . 6 (((𝑋 ∈ V ∧ 𝑌 ∈ V) ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → (𝜑[𝑋 / 𝑥][𝑌 / 𝑦]𝜑))
105, 9rabeqbidv 3449 . . . . 5 (((𝑋 ∈ V ∧ 𝑌 ∈ V) ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → {𝑧𝑥 / 𝑚𝑀𝜑} = {𝑧𝑋 / 𝑚𝑀[𝑋 / 𝑥][𝑌 / 𝑦]𝜑})
11 eqidd 2733 . . . . 5 (((𝑋 ∈ V ∧ 𝑌 ∈ V) ∧ 𝑥 = 𝑋) → V = V)
12 simpl 483 . . . . 5 ((𝑋 ∈ V ∧ 𝑌 ∈ V) → 𝑋 ∈ V)
13 simpr 485 . . . . 5 ((𝑋 ∈ V ∧ 𝑌 ∈ V) → 𝑌 ∈ V)
14 elovmporab1.v . . . . . 6 ((𝑋 ∈ V ∧ 𝑌 ∈ V) → 𝑋 / 𝑚𝑀 ∈ V)
15 rabexg 5331 . . . . . 6 (𝑋 / 𝑚𝑀 ∈ V → {𝑧𝑋 / 𝑚𝑀[𝑋 / 𝑥][𝑌 / 𝑦]𝜑} ∈ V)
1614, 15syl 17 . . . . 5 ((𝑋 ∈ V ∧ 𝑌 ∈ V) → {𝑧𝑋 / 𝑚𝑀[𝑋 / 𝑥][𝑌 / 𝑦]𝜑} ∈ V)
17 nfcv 2903 . . . . . . 7 𝑥𝑋
1817nfel1 2919 . . . . . 6 𝑥 𝑋 ∈ V
19 nfcv 2903 . . . . . . 7 𝑥𝑌
2019nfel1 2919 . . . . . 6 𝑥 𝑌 ∈ V
2118, 20nfan 1902 . . . . 5 𝑥(𝑋 ∈ V ∧ 𝑌 ∈ V)
22 nfcv 2903 . . . . . . 7 𝑦𝑋
2322nfel1 2919 . . . . . 6 𝑦 𝑋 ∈ V
24 nfcv 2903 . . . . . . 7 𝑦𝑌
2524nfel1 2919 . . . . . 6 𝑦 𝑌 ∈ V
2623, 25nfan 1902 . . . . 5 𝑦(𝑋 ∈ V ∧ 𝑌 ∈ V)
27 nfsbc1v 3797 . . . . . 6 𝑥[𝑋 / 𝑥][𝑌 / 𝑦]𝜑
28 nfcv 2903 . . . . . . 7 𝑥𝑀
2917, 28nfcsb 3921 . . . . . 6 𝑥𝑋 / 𝑚𝑀
3027, 29nfrab 3472 . . . . 5 𝑥{𝑧𝑋 / 𝑚𝑀[𝑋 / 𝑥][𝑌 / 𝑦]𝜑}
31 nfsbc1v 3797 . . . . . . 7 𝑦[𝑌 / 𝑦]𝜑
3222, 31nfsbc 3802 . . . . . 6 𝑦[𝑋 / 𝑥][𝑌 / 𝑦]𝜑
33 nfcv 2903 . . . . . . 7 𝑦𝑀
3422, 33nfcsb 3921 . . . . . 6 𝑦𝑋 / 𝑚𝑀
3532, 34nfrab 3472 . . . . 5 𝑦{𝑧𝑋 / 𝑚𝑀[𝑋 / 𝑥][𝑌 / 𝑦]𝜑}
363, 10, 11, 12, 13, 16, 21, 26, 22, 19, 30, 35ovmpodxf 7557 . . . 4 ((𝑋 ∈ V ∧ 𝑌 ∈ V) → (𝑋𝑂𝑌) = {𝑧𝑋 / 𝑚𝑀[𝑋 / 𝑥][𝑌 / 𝑦]𝜑})
3736eleq2d 2819 . . 3 ((𝑋 ∈ V ∧ 𝑌 ∈ V) → (𝑍 ∈ (𝑋𝑂𝑌) ↔ 𝑍 ∈ {𝑧𝑋 / 𝑚𝑀[𝑋 / 𝑥][𝑌 / 𝑦]𝜑}))
38 df-3an 1089 . . . . 5 ((𝑋 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍𝑋 / 𝑚𝑀) ↔ ((𝑋 ∈ V ∧ 𝑌 ∈ V) ∧ 𝑍𝑋 / 𝑚𝑀))
3938simplbi2com 503 . . . 4 (𝑍𝑋 / 𝑚𝑀 → ((𝑋 ∈ V ∧ 𝑌 ∈ V) → (𝑋 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍𝑋 / 𝑚𝑀)))
40 elrabi 3677 . . . 4 (𝑍 ∈ {𝑧𝑋 / 𝑚𝑀[𝑋 / 𝑥][𝑌 / 𝑦]𝜑} → 𝑍𝑋 / 𝑚𝑀)
4139, 40syl11 33 . . 3 ((𝑋 ∈ V ∧ 𝑌 ∈ V) → (𝑍 ∈ {𝑧𝑋 / 𝑚𝑀[𝑋 / 𝑥][𝑌 / 𝑦]𝜑} → (𝑋 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍𝑋 / 𝑚𝑀)))
4237, 41sylbid 239 . 2 ((𝑋 ∈ V ∧ 𝑌 ∈ V) → (𝑍 ∈ (𝑋𝑂𝑌) → (𝑋 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍𝑋 / 𝑚𝑀)))
432, 42mpcom 38 1 (𝑍 ∈ (𝑋𝑂𝑌) → (𝑋 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍𝑋 / 𝑚𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  {crab 3432  Vcvv 3474  [wsbc 3777  csb 3893  (class class class)co 7408  cmpo 7410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-13 2371  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-iota 6495  df-fun 6545  df-fv 6551  df-ov 7411  df-oprab 7412  df-mpo 7413
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator