MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbhypf Structured version   Visualization version   GIF version

Theorem csbhypf 3902
Description: Introduce an explicit substitution into an implicit substitution hypothesis. See sbhypf 3523 for class substitution version. (Contributed by NM, 19-Dec-2008.)
Hypotheses
Ref Expression
csbhypf.1 𝑥𝐴
csbhypf.2 𝑥𝐶
csbhypf.3 (𝑥 = 𝐴𝐵 = 𝐶)
Assertion
Ref Expression
csbhypf (𝑦 = 𝐴𝑦 / 𝑥𝐵 = 𝐶)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦)

Proof of Theorem csbhypf
StepHypRef Expression
1 csbhypf.1 . . . 4 𝑥𝐴
21nfeq2 2916 . . 3 𝑥 𝑦 = 𝐴
3 nfcsb1v 3898 . . . 4 𝑥𝑦 / 𝑥𝐵
4 csbhypf.2 . . . 4 𝑥𝐶
53, 4nfeq 2912 . . 3 𝑥𝑦 / 𝑥𝐵 = 𝐶
62, 5nfim 1896 . 2 𝑥(𝑦 = 𝐴𝑦 / 𝑥𝐵 = 𝐶)
7 eqeq1 2739 . . 3 (𝑥 = 𝑦 → (𝑥 = 𝐴𝑦 = 𝐴))
8 csbeq1a 3888 . . . 4 (𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵)
98eqeq1d 2737 . . 3 (𝑥 = 𝑦 → (𝐵 = 𝐶𝑦 / 𝑥𝐵 = 𝐶))
107, 9imbi12d 344 . 2 (𝑥 = 𝑦 → ((𝑥 = 𝐴𝐵 = 𝐶) ↔ (𝑦 = 𝐴𝑦 / 𝑥𝐵 = 𝐶)))
11 csbhypf.3 . 2 (𝑥 = 𝐴𝐵 = 𝐶)
126, 10, 11chvarfv 2240 1 (𝑦 = 𝐴𝑦 / 𝑥𝐵 = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wnfc 2883  csb 3874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-sbc 3766  df-csb 3875
This theorem is referenced by:  disji2  5103  disjprg  5115  disjxun  5117  tfisi  7854  coe1fzgsumdlem  22241  evl1gsumdlem  22294  iundisj2  25502  disji2f  32558  disjif2  32562  iundisj2f  32571  iundisj2fi  32774  evl1gprodd  42130
  Copyright terms: Public domain W3C validator