| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > csbhypf | Structured version Visualization version GIF version | ||
| Description: Introduce an explicit substitution into an implicit substitution hypothesis. See sbhypf 3513 for class substitution version. (Contributed by NM, 19-Dec-2008.) |
| Ref | Expression |
|---|---|
| csbhypf.1 | ⊢ Ⅎ𝑥𝐴 |
| csbhypf.2 | ⊢ Ⅎ𝑥𝐶 |
| csbhypf.3 | ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| csbhypf | ⊢ (𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌𝐵 = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbhypf.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 2 | 1 | nfeq2 2910 | . . 3 ⊢ Ⅎ𝑥 𝑦 = 𝐴 |
| 3 | nfcsb1v 3889 | . . . 4 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐵 | |
| 4 | csbhypf.2 | . . . 4 ⊢ Ⅎ𝑥𝐶 | |
| 5 | 3, 4 | nfeq 2906 | . . 3 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐵 = 𝐶 |
| 6 | 2, 5 | nfim 1896 | . 2 ⊢ Ⅎ𝑥(𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌𝐵 = 𝐶) |
| 7 | eqeq1 2734 | . . 3 ⊢ (𝑥 = 𝑦 → (𝑥 = 𝐴 ↔ 𝑦 = 𝐴)) | |
| 8 | csbeq1a 3879 | . . . 4 ⊢ (𝑥 = 𝑦 → 𝐵 = ⦋𝑦 / 𝑥⦌𝐵) | |
| 9 | 8 | eqeq1d 2732 | . . 3 ⊢ (𝑥 = 𝑦 → (𝐵 = 𝐶 ↔ ⦋𝑦 / 𝑥⦌𝐵 = 𝐶)) |
| 10 | 7, 9 | imbi12d 344 | . 2 ⊢ (𝑥 = 𝑦 → ((𝑥 = 𝐴 → 𝐵 = 𝐶) ↔ (𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌𝐵 = 𝐶))) |
| 11 | csbhypf.3 | . 2 ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) | |
| 12 | 6, 10, 11 | chvarfv 2241 | 1 ⊢ (𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌𝐵 = 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 Ⅎwnfc 2877 ⦋csb 3865 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-sbc 3757 df-csb 3866 |
| This theorem is referenced by: disji2 5094 disjprg 5106 disjxun 5108 tfisi 7838 coe1fzgsumdlem 22197 evl1gsumdlem 22250 iundisj2 25457 disji2f 32513 disjif2 32517 iundisj2f 32526 iundisj2fi 32727 evl1gprodd 42112 |
| Copyright terms: Public domain | W3C validator |