![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > csbhypf | Structured version Visualization version GIF version |
Description: Introduce an explicit substitution into an implicit substitution hypothesis. See sbhypf 3509 for class substitution version. (Contributed by NM, 19-Dec-2008.) |
Ref | Expression |
---|---|
csbhypf.1 | ⊢ Ⅎ𝑥𝐴 |
csbhypf.2 | ⊢ Ⅎ𝑥𝐶 |
csbhypf.3 | ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
csbhypf | ⊢ (𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌𝐵 = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbhypf.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
2 | 1 | nfeq2 2921 | . . 3 ⊢ Ⅎ𝑥 𝑦 = 𝐴 |
3 | nfcsb1v 3884 | . . . 4 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐵 | |
4 | csbhypf.2 | . . . 4 ⊢ Ⅎ𝑥𝐶 | |
5 | 3, 4 | nfeq 2917 | . . 3 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐵 = 𝐶 |
6 | 2, 5 | nfim 1900 | . 2 ⊢ Ⅎ𝑥(𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌𝐵 = 𝐶) |
7 | eqeq1 2737 | . . 3 ⊢ (𝑥 = 𝑦 → (𝑥 = 𝐴 ↔ 𝑦 = 𝐴)) | |
8 | csbeq1a 3873 | . . . 4 ⊢ (𝑥 = 𝑦 → 𝐵 = ⦋𝑦 / 𝑥⦌𝐵) | |
9 | 8 | eqeq1d 2735 | . . 3 ⊢ (𝑥 = 𝑦 → (𝐵 = 𝐶 ↔ ⦋𝑦 / 𝑥⦌𝐵 = 𝐶)) |
10 | 7, 9 | imbi12d 345 | . 2 ⊢ (𝑥 = 𝑦 → ((𝑥 = 𝐴 → 𝐵 = 𝐶) ↔ (𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌𝐵 = 𝐶))) |
11 | csbhypf.3 | . 2 ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) | |
12 | 6, 10, 11 | chvarfv 2234 | 1 ⊢ (𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌𝐵 = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 Ⅎwnfc 2884 ⦋csb 3859 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-tru 1545 df-ex 1783 df-nf 1787 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-sbc 3744 df-csb 3860 |
This theorem is referenced by: disji2 5091 disjprgw 5104 disjprg 5105 disjxun 5107 tfisi 7799 coe1fzgsumdlem 21695 evl1gsumdlem 21745 iundisj2 24936 disji2f 31548 disjif2 31552 iundisj2f 31561 iundisj2fi 31754 |
Copyright terms: Public domain | W3C validator |