MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfcsbw Structured version   Visualization version   GIF version

Theorem nfcsbw 3900
Description: Bound-variable hypothesis builder for substitution into a class. Version of nfcsb 3901 with a disjoint variable condition, which does not require ax-13 2376. (Contributed by Mario Carneiro, 12-Oct-2016.) Avoid ax-13 2376. (Revised by GG, 10-Jan-2024.)
Hypotheses
Ref Expression
nfcsbw.1 𝑥𝐴
nfcsbw.2 𝑥𝐵
Assertion
Ref Expression
nfcsbw 𝑥𝐴 / 𝑦𝐵
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)

Proof of Theorem nfcsbw
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-csb 3875 . . 3 𝐴 / 𝑦𝐵 = {𝑧[𝐴 / 𝑦]𝑧𝐵}
2 nftru 1804 . . . 4 𝑧
3 nftru 1804 . . . . 5 𝑦
4 nfcsbw.1 . . . . . 6 𝑥𝐴
54a1i 11 . . . . 5 (⊤ → 𝑥𝐴)
6 nfcsbw.2 . . . . . . 7 𝑥𝐵
76a1i 11 . . . . . 6 (⊤ → 𝑥𝐵)
87nfcrd 2892 . . . . 5 (⊤ → Ⅎ𝑥 𝑧𝐵)
93, 5, 8nfsbcdw 3786 . . . 4 (⊤ → Ⅎ𝑥[𝐴 / 𝑦]𝑧𝐵)
102, 9nfabdw 2920 . . 3 (⊤ → 𝑥{𝑧[𝐴 / 𝑦]𝑧𝐵})
111, 10nfcxfrd 2897 . 2 (⊤ → 𝑥𝐴 / 𝑦𝐵)
1211mptru 1547 1 𝑥𝐴 / 𝑦𝐵
Colors of variables: wff setvar class
Syntax hints:  wtru 1541  wcel 2108  {cab 2713  wnfc 2883  [wsbc 3765  csb 3874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-sbc 3766  df-csb 3875
This theorem is referenced by:  cbvrabcsfw  3915  elfvmptrab1w  7012  fmptcof  7119  fvmpopr2d  7567  elovmporab1w  7652  mpomptsx  8061  dmmpossx  8063  fmpox  8064  el2mpocsbcl  8082  fmpoco  8092  dfmpo  8099  mpocurryd  8266  fvmpocurryd  8268  nfsum  15705  fsum2dlem  15784  fsumcom2  15788  nfcprod  15923  fprod2dlem  15994  fprodcom2  15998  fsumcn  24810  fsum2cn  24811  dvmptfsum  25929  itgsubst  26006  iundisj2f  32517  f1od2  32644  esumiun  34071  poimirlem26  37616  cdlemkid  40901  cdlemk19x  40908  cdlemk11t  40911  fmpocos  42232  wdom2d2  43006  dmmpossx2  48260
  Copyright terms: Public domain W3C validator