MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfcsbw Structured version   Visualization version   GIF version

Theorem nfcsbw 3948
Description: Bound-variable hypothesis builder for substitution into a class. Version of nfcsb 3949 with a disjoint variable condition, which does not require ax-13 2380. (Contributed by Mario Carneiro, 12-Oct-2016.) Avoid ax-13 2380. (Revised by GG, 10-Jan-2024.)
Hypotheses
Ref Expression
nfcsbw.1 𝑥𝐴
nfcsbw.2 𝑥𝐵
Assertion
Ref Expression
nfcsbw 𝑥𝐴 / 𝑦𝐵
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)

Proof of Theorem nfcsbw
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-csb 3922 . . 3 𝐴 / 𝑦𝐵 = {𝑧[𝐴 / 𝑦]𝑧𝐵}
2 nftru 1802 . . . 4 𝑧
3 nftru 1802 . . . . 5 𝑦
4 nfcsbw.1 . . . . . 6 𝑥𝐴
54a1i 11 . . . . 5 (⊤ → 𝑥𝐴)
6 nfcsbw.2 . . . . . . 7 𝑥𝐵
76a1i 11 . . . . . 6 (⊤ → 𝑥𝐵)
87nfcrd 2902 . . . . 5 (⊤ → Ⅎ𝑥 𝑧𝐵)
93, 5, 8nfsbcdw 3825 . . . 4 (⊤ → Ⅎ𝑥[𝐴 / 𝑦]𝑧𝐵)
102, 9nfabdw 2932 . . 3 (⊤ → 𝑥{𝑧[𝐴 / 𝑦]𝑧𝐵})
111, 10nfcxfrd 2907 . 2 (⊤ → 𝑥𝐴 / 𝑦𝐵)
1211mptru 1544 1 𝑥𝐴 / 𝑦𝐵
Colors of variables: wff setvar class
Syntax hints:  wtru 1538  wcel 2108  {cab 2717  wnfc 2893  [wsbc 3804  csb 3921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-sbc 3805  df-csb 3922
This theorem is referenced by:  cbvrabcsfw  3965  elfvmptrab1w  7056  fmptcof  7164  fvmpopr2d  7612  elovmporab1w  7697  mpomptsx  8105  dmmpossx  8107  fmpox  8108  el2mpocsbcl  8126  fmpoco  8136  dfmpo  8143  mpocurryd  8310  fvmpocurryd  8312  nfsum  15739  fsum2dlem  15818  fsumcom2  15822  nfcprod  15957  fprod2dlem  16028  fprodcom2  16032  fsumcn  24913  fsum2cn  24914  dvmptfsum  26033  itgsubst  26110  iundisj2f  32612  f1od2  32735  esumiun  34058  poimirlem26  37606  cdlemkid  40893  cdlemk19x  40900  cdlemk11t  40903  fmpocos  42229  wdom2d2  42992  dmmpossx2  48061
  Copyright terms: Public domain W3C validator