MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfcsbw Structured version   Visualization version   GIF version

Theorem nfcsbw 3920
Description: Bound-variable hypothesis builder for substitution into a class. Version of nfcsb 3921 with a disjoint variable condition, which does not require ax-13 2371. (Contributed by Mario Carneiro, 12-Oct-2016.) Avoid ax-13 2371. (Revised by Gino Giotto, 10-Jan-2024.)
Hypotheses
Ref Expression
nfcsbw.1 𝑥𝐴
nfcsbw.2 𝑥𝐵
Assertion
Ref Expression
nfcsbw 𝑥𝐴 / 𝑦𝐵
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)

Proof of Theorem nfcsbw
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-csb 3894 . . 3 𝐴 / 𝑦𝐵 = {𝑧[𝐴 / 𝑦]𝑧𝐵}
2 nftru 1806 . . . 4 𝑧
3 nftru 1806 . . . . 5 𝑦
4 nfcsbw.1 . . . . . 6 𝑥𝐴
54a1i 11 . . . . 5 (⊤ → 𝑥𝐴)
6 nfcsbw.2 . . . . . . 7 𝑥𝐵
76a1i 11 . . . . . 6 (⊤ → 𝑥𝐵)
87nfcrd 2892 . . . . 5 (⊤ → Ⅎ𝑥 𝑧𝐵)
93, 5, 8nfsbcdw 3798 . . . 4 (⊤ → Ⅎ𝑥[𝐴 / 𝑦]𝑧𝐵)
102, 9nfabdw 2926 . . 3 (⊤ → 𝑥{𝑧[𝐴 / 𝑦]𝑧𝐵})
111, 10nfcxfrd 2902 . 2 (⊤ → 𝑥𝐴 / 𝑦𝐵)
1211mptru 1548 1 𝑥𝐴 / 𝑦𝐵
Colors of variables: wff setvar class
Syntax hints:  wtru 1542  wcel 2106  {cab 2709  wnfc 2883  [wsbc 3777  csb 3893
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-tru 1544  df-ex 1782  df-nf 1786  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-sbc 3778  df-csb 3894
This theorem is referenced by:  cbvrabcsfw  3937  elfvmptrab1w  7024  fmptcof  7130  fvmpopr2d  7571  elovmporab1w  7655  mpomptsx  8052  dmmpossx  8054  fmpox  8055  el2mpocsbcl  8073  fmpoco  8083  dfmpo  8090  mpocurryd  8256  fvmpocurryd  8258  nfsum  15641  fsum2dlem  15720  fsumcom2  15724  nfcprod  15859  fprod2dlem  15928  fprodcom2  15932  fsumcn  24608  fsum2cn  24609  dvmptfsum  25716  itgsubst  25790  iundisj2f  32076  f1od2  32201  esumiun  33378  poimirlem26  36817  cdlemkid  40110  cdlemk19x  40117  cdlemk11t  40120  fmpocos  41362  wdom2d2  42076  dmmpossx2  47101
  Copyright terms: Public domain W3C validator