| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfcsbw | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for substitution into a class. Version of nfcsb 3886 with a disjoint variable condition, which does not require ax-13 2370. (Contributed by Mario Carneiro, 12-Oct-2016.) Avoid ax-13 2370. (Revised by GG, 10-Jan-2024.) |
| Ref | Expression |
|---|---|
| nfcsbw.1 | ⊢ Ⅎ𝑥𝐴 |
| nfcsbw.2 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| nfcsbw | ⊢ Ⅎ𝑥⦋𝐴 / 𝑦⦌𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-csb 3860 | . . 3 ⊢ ⦋𝐴 / 𝑦⦌𝐵 = {𝑧 ∣ [𝐴 / 𝑦]𝑧 ∈ 𝐵} | |
| 2 | nftru 1804 | . . . 4 ⊢ Ⅎ𝑧⊤ | |
| 3 | nftru 1804 | . . . . 5 ⊢ Ⅎ𝑦⊤ | |
| 4 | nfcsbw.1 | . . . . . 6 ⊢ Ⅎ𝑥𝐴 | |
| 5 | 4 | a1i 11 | . . . . 5 ⊢ (⊤ → Ⅎ𝑥𝐴) |
| 6 | nfcsbw.2 | . . . . . . 7 ⊢ Ⅎ𝑥𝐵 | |
| 7 | 6 | a1i 11 | . . . . . 6 ⊢ (⊤ → Ⅎ𝑥𝐵) |
| 8 | 7 | nfcrd 2885 | . . . . 5 ⊢ (⊤ → Ⅎ𝑥 𝑧 ∈ 𝐵) |
| 9 | 3, 5, 8 | nfsbcdw 3771 | . . . 4 ⊢ (⊤ → Ⅎ𝑥[𝐴 / 𝑦]𝑧 ∈ 𝐵) |
| 10 | 2, 9 | nfabdw 2913 | . . 3 ⊢ (⊤ → Ⅎ𝑥{𝑧 ∣ [𝐴 / 𝑦]𝑧 ∈ 𝐵}) |
| 11 | 1, 10 | nfcxfrd 2890 | . 2 ⊢ (⊤ → Ⅎ𝑥⦋𝐴 / 𝑦⦌𝐵) |
| 12 | 11 | mptru 1547 | 1 ⊢ Ⅎ𝑥⦋𝐴 / 𝑦⦌𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: ⊤wtru 1541 ∈ wcel 2109 {cab 2707 Ⅎwnfc 2876 [wsbc 3750 ⦋csb 3859 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-sbc 3751 df-csb 3860 |
| This theorem is referenced by: cbvrabcsfw 3900 elfvmptrab1w 6978 fmptcof 7085 fvmpopr2d 7532 elovmporab1w 7617 mpomptsx 8023 dmmpossx 8025 fmpox 8026 el2mpocsbcl 8042 fmpoco 8052 dfmpo 8059 mpocurryd 8226 fvmpocurryd 8228 nfsum 15635 fsum2dlem 15714 fsumcom2 15718 nfcprod 15853 fprod2dlem 15924 fprodcom2 15928 fsumcn 24796 fsum2cn 24797 dvmptfsum 25914 itgsubst 25991 iundisj2f 32571 f1od2 32696 esumiun 34079 poimirlem26 37635 cdlemkid 40925 cdlemk19x 40932 cdlemk11t 40935 fmpocos 42217 wdom2d2 43019 dmmpossx2 48320 |
| Copyright terms: Public domain | W3C validator |