Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfcsbw | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for substitution into a class. Version of nfcsb 3856 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by Mario Carneiro, 12-Oct-2016.) (Revised by Gino Giotto, 10-Jan-2024.) |
Ref | Expression |
---|---|
nfcsbw.1 | ⊢ Ⅎ𝑥𝐴 |
nfcsbw.2 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
nfcsbw | ⊢ Ⅎ𝑥⦋𝐴 / 𝑦⦌𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-csb 3829 | . . 3 ⊢ ⦋𝐴 / 𝑦⦌𝐵 = {𝑧 ∣ [𝐴 / 𝑦]𝑧 ∈ 𝐵} | |
2 | nftru 1808 | . . . 4 ⊢ Ⅎ𝑧⊤ | |
3 | nftru 1808 | . . . . 5 ⊢ Ⅎ𝑦⊤ | |
4 | nfcsbw.1 | . . . . . 6 ⊢ Ⅎ𝑥𝐴 | |
5 | 4 | a1i 11 | . . . . 5 ⊢ (⊤ → Ⅎ𝑥𝐴) |
6 | nfcsbw.2 | . . . . . . 7 ⊢ Ⅎ𝑥𝐵 | |
7 | 6 | a1i 11 | . . . . . 6 ⊢ (⊤ → Ⅎ𝑥𝐵) |
8 | 7 | nfcrd 2895 | . . . . 5 ⊢ (⊤ → Ⅎ𝑥 𝑧 ∈ 𝐵) |
9 | 3, 5, 8 | nfsbcdw 3732 | . . . 4 ⊢ (⊤ → Ⅎ𝑥[𝐴 / 𝑦]𝑧 ∈ 𝐵) |
10 | 2, 9 | nfabdw 2929 | . . 3 ⊢ (⊤ → Ⅎ𝑥{𝑧 ∣ [𝐴 / 𝑦]𝑧 ∈ 𝐵}) |
11 | 1, 10 | nfcxfrd 2905 | . 2 ⊢ (⊤ → Ⅎ𝑥⦋𝐴 / 𝑦⦌𝐵) |
12 | 11 | mptru 1546 | 1 ⊢ Ⅎ𝑥⦋𝐴 / 𝑦⦌𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ⊤wtru 1540 ∈ wcel 2108 {cab 2715 Ⅎwnfc 2886 [wsbc 3711 ⦋csb 3828 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-sbc 3712 df-csb 3829 |
This theorem is referenced by: cbvrabcsfw 3872 elfvmptrab1w 6883 fmptcof 6984 fvmpopr2d 7412 elovmporab1w 7494 mpomptsx 7877 dmmpossx 7879 fmpox 7880 el2mpocsbcl 7896 fmpoco 7906 dfmpo 7913 mpocurryd 8056 fvmpocurryd 8058 nfsum 15330 fsum2dlem 15410 fsumcom2 15414 nfcprod 15549 fprod2dlem 15618 fprodcom2 15622 fsumcn 23939 fsum2cn 23940 dvmptfsum 25044 itgsubst 25118 iundisj2f 30830 f1od2 30958 esumiun 31962 poimirlem26 35730 cdlemkid 38877 cdlemk19x 38884 cdlemk11t 38887 wdom2d2 40773 dmmpossx2 45560 |
Copyright terms: Public domain | W3C validator |