| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfcsbw | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for substitution into a class. Version of nfcsb 3892 with a disjoint variable condition, which does not require ax-13 2371. (Contributed by Mario Carneiro, 12-Oct-2016.) Avoid ax-13 2371. (Revised by GG, 10-Jan-2024.) |
| Ref | Expression |
|---|---|
| nfcsbw.1 | ⊢ Ⅎ𝑥𝐴 |
| nfcsbw.2 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| nfcsbw | ⊢ Ⅎ𝑥⦋𝐴 / 𝑦⦌𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-csb 3866 | . . 3 ⊢ ⦋𝐴 / 𝑦⦌𝐵 = {𝑧 ∣ [𝐴 / 𝑦]𝑧 ∈ 𝐵} | |
| 2 | nftru 1804 | . . . 4 ⊢ Ⅎ𝑧⊤ | |
| 3 | nftru 1804 | . . . . 5 ⊢ Ⅎ𝑦⊤ | |
| 4 | nfcsbw.1 | . . . . . 6 ⊢ Ⅎ𝑥𝐴 | |
| 5 | 4 | a1i 11 | . . . . 5 ⊢ (⊤ → Ⅎ𝑥𝐴) |
| 6 | nfcsbw.2 | . . . . . . 7 ⊢ Ⅎ𝑥𝐵 | |
| 7 | 6 | a1i 11 | . . . . . 6 ⊢ (⊤ → Ⅎ𝑥𝐵) |
| 8 | 7 | nfcrd 2886 | . . . . 5 ⊢ (⊤ → Ⅎ𝑥 𝑧 ∈ 𝐵) |
| 9 | 3, 5, 8 | nfsbcdw 3777 | . . . 4 ⊢ (⊤ → Ⅎ𝑥[𝐴 / 𝑦]𝑧 ∈ 𝐵) |
| 10 | 2, 9 | nfabdw 2914 | . . 3 ⊢ (⊤ → Ⅎ𝑥{𝑧 ∣ [𝐴 / 𝑦]𝑧 ∈ 𝐵}) |
| 11 | 1, 10 | nfcxfrd 2891 | . 2 ⊢ (⊤ → Ⅎ𝑥⦋𝐴 / 𝑦⦌𝐵) |
| 12 | 11 | mptru 1547 | 1 ⊢ Ⅎ𝑥⦋𝐴 / 𝑦⦌𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: ⊤wtru 1541 ∈ wcel 2109 {cab 2708 Ⅎwnfc 2877 [wsbc 3756 ⦋csb 3865 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-sbc 3757 df-csb 3866 |
| This theorem is referenced by: cbvrabcsfw 3906 elfvmptrab1w 6998 fmptcof 7105 fvmpopr2d 7554 elovmporab1w 7639 mpomptsx 8046 dmmpossx 8048 fmpox 8049 el2mpocsbcl 8067 fmpoco 8077 dfmpo 8084 mpocurryd 8251 fvmpocurryd 8253 nfsum 15664 fsum2dlem 15743 fsumcom2 15747 nfcprod 15882 fprod2dlem 15953 fprodcom2 15957 fsumcn 24768 fsum2cn 24769 dvmptfsum 25886 itgsubst 25963 iundisj2f 32526 f1od2 32651 esumiun 34091 poimirlem26 37647 cdlemkid 40937 cdlemk19x 40944 cdlemk11t 40947 fmpocos 42229 wdom2d2 43031 dmmpossx2 48329 |
| Copyright terms: Public domain | W3C validator |