MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfcsbw Structured version   Visualization version   GIF version

Theorem nfcsbw 3885
Description: Bound-variable hypothesis builder for substitution into a class. Version of nfcsb 3886 with a disjoint variable condition, which does not require ax-13 2370. (Contributed by Mario Carneiro, 12-Oct-2016.) Avoid ax-13 2370. (Revised by GG, 10-Jan-2024.)
Hypotheses
Ref Expression
nfcsbw.1 𝑥𝐴
nfcsbw.2 𝑥𝐵
Assertion
Ref Expression
nfcsbw 𝑥𝐴 / 𝑦𝐵
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)

Proof of Theorem nfcsbw
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-csb 3860 . . 3 𝐴 / 𝑦𝐵 = {𝑧[𝐴 / 𝑦]𝑧𝐵}
2 nftru 1804 . . . 4 𝑧
3 nftru 1804 . . . . 5 𝑦
4 nfcsbw.1 . . . . . 6 𝑥𝐴
54a1i 11 . . . . 5 (⊤ → 𝑥𝐴)
6 nfcsbw.2 . . . . . . 7 𝑥𝐵
76a1i 11 . . . . . 6 (⊤ → 𝑥𝐵)
87nfcrd 2885 . . . . 5 (⊤ → Ⅎ𝑥 𝑧𝐵)
93, 5, 8nfsbcdw 3771 . . . 4 (⊤ → Ⅎ𝑥[𝐴 / 𝑦]𝑧𝐵)
102, 9nfabdw 2913 . . 3 (⊤ → 𝑥{𝑧[𝐴 / 𝑦]𝑧𝐵})
111, 10nfcxfrd 2890 . 2 (⊤ → 𝑥𝐴 / 𝑦𝐵)
1211mptru 1547 1 𝑥𝐴 / 𝑦𝐵
Colors of variables: wff setvar class
Syntax hints:  wtru 1541  wcel 2109  {cab 2707  wnfc 2876  [wsbc 3750  csb 3859
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-sbc 3751  df-csb 3860
This theorem is referenced by:  cbvrabcsfw  3900  elfvmptrab1w  6977  fmptcof  7084  fvmpopr2d  7531  elovmporab1w  7616  mpomptsx  8022  dmmpossx  8024  fmpox  8025  el2mpocsbcl  8041  fmpoco  8051  dfmpo  8058  mpocurryd  8225  fvmpocurryd  8227  nfsum  15634  fsum2dlem  15713  fsumcom2  15717  nfcprod  15852  fprod2dlem  15923  fprodcom2  15927  fsumcn  24795  fsum2cn  24796  dvmptfsum  25913  itgsubst  25990  iundisj2f  32570  f1od2  32695  esumiun  34078  poimirlem26  37634  cdlemkid  40924  cdlemk19x  40931  cdlemk11t  40934  fmpocos  42216  wdom2d2  43018  dmmpossx2  48319
  Copyright terms: Public domain W3C validator