Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfcsbw | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for substitution into a class. Version of nfcsb 3860 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by Mario Carneiro, 12-Oct-2016.) (Revised by Gino Giotto, 10-Jan-2024.) |
Ref | Expression |
---|---|
nfcsbw.1 | ⊢ Ⅎ𝑥𝐴 |
nfcsbw.2 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
nfcsbw | ⊢ Ⅎ𝑥⦋𝐴 / 𝑦⦌𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-csb 3833 | . . 3 ⊢ ⦋𝐴 / 𝑦⦌𝐵 = {𝑧 ∣ [𝐴 / 𝑦]𝑧 ∈ 𝐵} | |
2 | nftru 1807 | . . . 4 ⊢ Ⅎ𝑧⊤ | |
3 | nftru 1807 | . . . . 5 ⊢ Ⅎ𝑦⊤ | |
4 | nfcsbw.1 | . . . . . 6 ⊢ Ⅎ𝑥𝐴 | |
5 | 4 | a1i 11 | . . . . 5 ⊢ (⊤ → Ⅎ𝑥𝐴) |
6 | nfcsbw.2 | . . . . . . 7 ⊢ Ⅎ𝑥𝐵 | |
7 | 6 | a1i 11 | . . . . . 6 ⊢ (⊤ → Ⅎ𝑥𝐵) |
8 | 7 | nfcrd 2896 | . . . . 5 ⊢ (⊤ → Ⅎ𝑥 𝑧 ∈ 𝐵) |
9 | 3, 5, 8 | nfsbcdw 3737 | . . . 4 ⊢ (⊤ → Ⅎ𝑥[𝐴 / 𝑦]𝑧 ∈ 𝐵) |
10 | 2, 9 | nfabdw 2930 | . . 3 ⊢ (⊤ → Ⅎ𝑥{𝑧 ∣ [𝐴 / 𝑦]𝑧 ∈ 𝐵}) |
11 | 1, 10 | nfcxfrd 2906 | . 2 ⊢ (⊤ → Ⅎ𝑥⦋𝐴 / 𝑦⦌𝐵) |
12 | 11 | mptru 1546 | 1 ⊢ Ⅎ𝑥⦋𝐴 / 𝑦⦌𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ⊤wtru 1540 ∈ wcel 2106 {cab 2715 Ⅎwnfc 2887 [wsbc 3716 ⦋csb 3832 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-sbc 3717 df-csb 3833 |
This theorem is referenced by: cbvrabcsfw 3876 elfvmptrab1w 6901 fmptcof 7002 fvmpopr2d 7434 elovmporab1w 7516 mpomptsx 7904 dmmpossx 7906 fmpox 7907 el2mpocsbcl 7925 fmpoco 7935 dfmpo 7942 mpocurryd 8085 fvmpocurryd 8087 nfsum 15402 fsum2dlem 15482 fsumcom2 15486 nfcprod 15621 fprod2dlem 15690 fprodcom2 15694 fsumcn 24033 fsum2cn 24034 dvmptfsum 25139 itgsubst 25213 iundisj2f 30929 f1od2 31056 esumiun 32062 poimirlem26 35803 cdlemkid 38950 cdlemk19x 38957 cdlemk11t 38960 wdom2d2 40857 dmmpossx2 45672 |
Copyright terms: Public domain | W3C validator |