| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfcsbw | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for substitution into a class. Version of nfcsb 3889 with a disjoint variable condition, which does not require ax-13 2370. (Contributed by Mario Carneiro, 12-Oct-2016.) Avoid ax-13 2370. (Revised by GG, 10-Jan-2024.) |
| Ref | Expression |
|---|---|
| nfcsbw.1 | ⊢ Ⅎ𝑥𝐴 |
| nfcsbw.2 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| nfcsbw | ⊢ Ⅎ𝑥⦋𝐴 / 𝑦⦌𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-csb 3863 | . . 3 ⊢ ⦋𝐴 / 𝑦⦌𝐵 = {𝑧 ∣ [𝐴 / 𝑦]𝑧 ∈ 𝐵} | |
| 2 | nftru 1804 | . . . 4 ⊢ Ⅎ𝑧⊤ | |
| 3 | nftru 1804 | . . . . 5 ⊢ Ⅎ𝑦⊤ | |
| 4 | nfcsbw.1 | . . . . . 6 ⊢ Ⅎ𝑥𝐴 | |
| 5 | 4 | a1i 11 | . . . . 5 ⊢ (⊤ → Ⅎ𝑥𝐴) |
| 6 | nfcsbw.2 | . . . . . . 7 ⊢ Ⅎ𝑥𝐵 | |
| 7 | 6 | a1i 11 | . . . . . 6 ⊢ (⊤ → Ⅎ𝑥𝐵) |
| 8 | 7 | nfcrd 2885 | . . . . 5 ⊢ (⊤ → Ⅎ𝑥 𝑧 ∈ 𝐵) |
| 9 | 3, 5, 8 | nfsbcdw 3774 | . . . 4 ⊢ (⊤ → Ⅎ𝑥[𝐴 / 𝑦]𝑧 ∈ 𝐵) |
| 10 | 2, 9 | nfabdw 2913 | . . 3 ⊢ (⊤ → Ⅎ𝑥{𝑧 ∣ [𝐴 / 𝑦]𝑧 ∈ 𝐵}) |
| 11 | 1, 10 | nfcxfrd 2890 | . 2 ⊢ (⊤ → Ⅎ𝑥⦋𝐴 / 𝑦⦌𝐵) |
| 12 | 11 | mptru 1547 | 1 ⊢ Ⅎ𝑥⦋𝐴 / 𝑦⦌𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: ⊤wtru 1541 ∈ wcel 2109 {cab 2707 Ⅎwnfc 2876 [wsbc 3753 ⦋csb 3862 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-sbc 3754 df-csb 3863 |
| This theorem is referenced by: cbvrabcsfw 3903 elfvmptrab1w 6995 fmptcof 7102 fvmpopr2d 7551 elovmporab1w 7636 mpomptsx 8043 dmmpossx 8045 fmpox 8046 el2mpocsbcl 8064 fmpoco 8074 dfmpo 8081 mpocurryd 8248 fvmpocurryd 8250 nfsum 15657 fsum2dlem 15736 fsumcom2 15740 nfcprod 15875 fprod2dlem 15946 fprodcom2 15950 fsumcn 24761 fsum2cn 24762 dvmptfsum 25879 itgsubst 25956 iundisj2f 32519 f1od2 32644 esumiun 34084 poimirlem26 37640 cdlemkid 40930 cdlemk19x 40937 cdlemk11t 40940 fmpocos 42222 wdom2d2 43024 dmmpossx2 48325 |
| Copyright terms: Public domain | W3C validator |