MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfcsbw Structured version   Visualization version   GIF version

Theorem nfcsbw 3855
Description: Bound-variable hypothesis builder for substitution into a class. Version of nfcsb 3856 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by Mario Carneiro, 12-Oct-2016.) (Revised by Gino Giotto, 10-Jan-2024.)
Hypotheses
Ref Expression
nfcsbw.1 𝑥𝐴
nfcsbw.2 𝑥𝐵
Assertion
Ref Expression
nfcsbw 𝑥𝐴 / 𝑦𝐵
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)

Proof of Theorem nfcsbw
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-csb 3829 . . 3 𝐴 / 𝑦𝐵 = {𝑧[𝐴 / 𝑦]𝑧𝐵}
2 nftru 1808 . . . 4 𝑧
3 nftru 1808 . . . . 5 𝑦
4 nfcsbw.1 . . . . . 6 𝑥𝐴
54a1i 11 . . . . 5 (⊤ → 𝑥𝐴)
6 nfcsbw.2 . . . . . . 7 𝑥𝐵
76a1i 11 . . . . . 6 (⊤ → 𝑥𝐵)
87nfcrd 2895 . . . . 5 (⊤ → Ⅎ𝑥 𝑧𝐵)
93, 5, 8nfsbcdw 3732 . . . 4 (⊤ → Ⅎ𝑥[𝐴 / 𝑦]𝑧𝐵)
102, 9nfabdw 2929 . . 3 (⊤ → 𝑥{𝑧[𝐴 / 𝑦]𝑧𝐵})
111, 10nfcxfrd 2905 . 2 (⊤ → 𝑥𝐴 / 𝑦𝐵)
1211mptru 1546 1 𝑥𝐴 / 𝑦𝐵
Colors of variables: wff setvar class
Syntax hints:  wtru 1540  wcel 2108  {cab 2715  wnfc 2886  [wsbc 3711  csb 3828
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-sbc 3712  df-csb 3829
This theorem is referenced by:  cbvrabcsfw  3872  elfvmptrab1w  6883  fmptcof  6984  fvmpopr2d  7412  elovmporab1w  7494  mpomptsx  7877  dmmpossx  7879  fmpox  7880  el2mpocsbcl  7896  fmpoco  7906  dfmpo  7913  mpocurryd  8056  fvmpocurryd  8058  nfsum  15330  fsum2dlem  15410  fsumcom2  15414  nfcprod  15549  fprod2dlem  15618  fprodcom2  15622  fsumcn  23939  fsum2cn  23940  dvmptfsum  25044  itgsubst  25118  iundisj2f  30830  f1od2  30958  esumiun  31962  poimirlem26  35730  cdlemkid  38877  cdlemk19x  38884  cdlemk11t  38887  wdom2d2  40773  dmmpossx2  45560
  Copyright terms: Public domain W3C validator