| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfcsbw | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for substitution into a class. Version of nfcsb 3886 with a disjoint variable condition, which does not require ax-13 2370. (Contributed by Mario Carneiro, 12-Oct-2016.) Avoid ax-13 2370. (Revised by GG, 10-Jan-2024.) |
| Ref | Expression |
|---|---|
| nfcsbw.1 | ⊢ Ⅎ𝑥𝐴 |
| nfcsbw.2 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| nfcsbw | ⊢ Ⅎ𝑥⦋𝐴 / 𝑦⦌𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-csb 3860 | . . 3 ⊢ ⦋𝐴 / 𝑦⦌𝐵 = {𝑧 ∣ [𝐴 / 𝑦]𝑧 ∈ 𝐵} | |
| 2 | nftru 1804 | . . . 4 ⊢ Ⅎ𝑧⊤ | |
| 3 | nftru 1804 | . . . . 5 ⊢ Ⅎ𝑦⊤ | |
| 4 | nfcsbw.1 | . . . . . 6 ⊢ Ⅎ𝑥𝐴 | |
| 5 | 4 | a1i 11 | . . . . 5 ⊢ (⊤ → Ⅎ𝑥𝐴) |
| 6 | nfcsbw.2 | . . . . . . 7 ⊢ Ⅎ𝑥𝐵 | |
| 7 | 6 | a1i 11 | . . . . . 6 ⊢ (⊤ → Ⅎ𝑥𝐵) |
| 8 | 7 | nfcrd 2885 | . . . . 5 ⊢ (⊤ → Ⅎ𝑥 𝑧 ∈ 𝐵) |
| 9 | 3, 5, 8 | nfsbcdw 3771 | . . . 4 ⊢ (⊤ → Ⅎ𝑥[𝐴 / 𝑦]𝑧 ∈ 𝐵) |
| 10 | 2, 9 | nfabdw 2913 | . . 3 ⊢ (⊤ → Ⅎ𝑥{𝑧 ∣ [𝐴 / 𝑦]𝑧 ∈ 𝐵}) |
| 11 | 1, 10 | nfcxfrd 2890 | . 2 ⊢ (⊤ → Ⅎ𝑥⦋𝐴 / 𝑦⦌𝐵) |
| 12 | 11 | mptru 1547 | 1 ⊢ Ⅎ𝑥⦋𝐴 / 𝑦⦌𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: ⊤wtru 1541 ∈ wcel 2109 {cab 2707 Ⅎwnfc 2876 [wsbc 3750 ⦋csb 3859 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-sbc 3751 df-csb 3860 |
| This theorem is referenced by: cbvrabcsfw 3900 elfvmptrab1w 6977 fmptcof 7084 fvmpopr2d 7531 elovmporab1w 7616 mpomptsx 8022 dmmpossx 8024 fmpox 8025 el2mpocsbcl 8041 fmpoco 8051 dfmpo 8058 mpocurryd 8225 fvmpocurryd 8227 nfsum 15633 fsum2dlem 15712 fsumcom2 15716 nfcprod 15851 fprod2dlem 15922 fprodcom2 15926 fsumcn 24794 fsum2cn 24795 dvmptfsum 25912 itgsubst 25989 iundisj2f 32569 f1od2 32694 esumiun 34077 poimirlem26 37633 cdlemkid 40923 cdlemk19x 40930 cdlemk11t 40933 fmpocos 42215 wdom2d2 43017 dmmpossx2 48318 |
| Copyright terms: Public domain | W3C validator |