![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfcsbw | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for substitution into a class. Version of nfcsb 3913 with a disjoint variable condition, which does not require ax-13 2363. (Contributed by Mario Carneiro, 12-Oct-2016.) Avoid ax-13 2363. (Revised by Gino Giotto, 10-Jan-2024.) |
Ref | Expression |
---|---|
nfcsbw.1 | ⊢ Ⅎ𝑥𝐴 |
nfcsbw.2 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
nfcsbw | ⊢ Ⅎ𝑥⦋𝐴 / 𝑦⦌𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-csb 3886 | . . 3 ⊢ ⦋𝐴 / 𝑦⦌𝐵 = {𝑧 ∣ [𝐴 / 𝑦]𝑧 ∈ 𝐵} | |
2 | nftru 1798 | . . . 4 ⊢ Ⅎ𝑧⊤ | |
3 | nftru 1798 | . . . . 5 ⊢ Ⅎ𝑦⊤ | |
4 | nfcsbw.1 | . . . . . 6 ⊢ Ⅎ𝑥𝐴 | |
5 | 4 | a1i 11 | . . . . 5 ⊢ (⊤ → Ⅎ𝑥𝐴) |
6 | nfcsbw.2 | . . . . . . 7 ⊢ Ⅎ𝑥𝐵 | |
7 | 6 | a1i 11 | . . . . . 6 ⊢ (⊤ → Ⅎ𝑥𝐵) |
8 | 7 | nfcrd 2884 | . . . . 5 ⊢ (⊤ → Ⅎ𝑥 𝑧 ∈ 𝐵) |
9 | 3, 5, 8 | nfsbcdw 3790 | . . . 4 ⊢ (⊤ → Ⅎ𝑥[𝐴 / 𝑦]𝑧 ∈ 𝐵) |
10 | 2, 9 | nfabdw 2918 | . . 3 ⊢ (⊤ → Ⅎ𝑥{𝑧 ∣ [𝐴 / 𝑦]𝑧 ∈ 𝐵}) |
11 | 1, 10 | nfcxfrd 2894 | . 2 ⊢ (⊤ → Ⅎ𝑥⦋𝐴 / 𝑦⦌𝐵) |
12 | 11 | mptru 1540 | 1 ⊢ Ⅎ𝑥⦋𝐴 / 𝑦⦌𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ⊤wtru 1534 ∈ wcel 2098 {cab 2701 Ⅎwnfc 2875 [wsbc 3769 ⦋csb 3885 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-tru 1536 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-sbc 3770 df-csb 3886 |
This theorem is referenced by: cbvrabcsfw 3929 elfvmptrab1w 7014 fmptcof 7120 fvmpopr2d 7562 elovmporab1w 7646 mpomptsx 8043 dmmpossx 8045 fmpox 8046 el2mpocsbcl 8065 fmpoco 8075 dfmpo 8082 mpocurryd 8249 fvmpocurryd 8251 nfsum 15633 fsum2dlem 15712 fsumcom2 15716 nfcprod 15851 fprod2dlem 15920 fprodcom2 15924 fsumcn 24709 fsum2cn 24710 dvmptfsum 25828 itgsubst 25905 iundisj2f 32256 f1od2 32381 esumiun 33547 poimirlem26 36970 cdlemkid 40263 cdlemk19x 40270 cdlemk11t 40273 fmpocos 41515 wdom2d2 42229 dmmpossx2 47167 |
Copyright terms: Public domain | W3C validator |