![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfcsbw | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for substitution into a class. Version of nfcsb 3921 with a disjoint variable condition, which does not require ax-13 2371. (Contributed by Mario Carneiro, 12-Oct-2016.) Avoid ax-13 2371. (Revised by Gino Giotto, 10-Jan-2024.) |
Ref | Expression |
---|---|
nfcsbw.1 | ⊢ Ⅎ𝑥𝐴 |
nfcsbw.2 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
nfcsbw | ⊢ Ⅎ𝑥⦋𝐴 / 𝑦⦌𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-csb 3894 | . . 3 ⊢ ⦋𝐴 / 𝑦⦌𝐵 = {𝑧 ∣ [𝐴 / 𝑦]𝑧 ∈ 𝐵} | |
2 | nftru 1806 | . . . 4 ⊢ Ⅎ𝑧⊤ | |
3 | nftru 1806 | . . . . 5 ⊢ Ⅎ𝑦⊤ | |
4 | nfcsbw.1 | . . . . . 6 ⊢ Ⅎ𝑥𝐴 | |
5 | 4 | a1i 11 | . . . . 5 ⊢ (⊤ → Ⅎ𝑥𝐴) |
6 | nfcsbw.2 | . . . . . . 7 ⊢ Ⅎ𝑥𝐵 | |
7 | 6 | a1i 11 | . . . . . 6 ⊢ (⊤ → Ⅎ𝑥𝐵) |
8 | 7 | nfcrd 2892 | . . . . 5 ⊢ (⊤ → Ⅎ𝑥 𝑧 ∈ 𝐵) |
9 | 3, 5, 8 | nfsbcdw 3798 | . . . 4 ⊢ (⊤ → Ⅎ𝑥[𝐴 / 𝑦]𝑧 ∈ 𝐵) |
10 | 2, 9 | nfabdw 2926 | . . 3 ⊢ (⊤ → Ⅎ𝑥{𝑧 ∣ [𝐴 / 𝑦]𝑧 ∈ 𝐵}) |
11 | 1, 10 | nfcxfrd 2902 | . 2 ⊢ (⊤ → Ⅎ𝑥⦋𝐴 / 𝑦⦌𝐵) |
12 | 11 | mptru 1548 | 1 ⊢ Ⅎ𝑥⦋𝐴 / 𝑦⦌𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ⊤wtru 1542 ∈ wcel 2106 {cab 2709 Ⅎwnfc 2883 [wsbc 3777 ⦋csb 3893 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-tru 1544 df-ex 1782 df-nf 1786 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-sbc 3778 df-csb 3894 |
This theorem is referenced by: cbvrabcsfw 3937 elfvmptrab1w 7024 fmptcof 7130 fvmpopr2d 7571 elovmporab1w 7655 mpomptsx 8052 dmmpossx 8054 fmpox 8055 el2mpocsbcl 8073 fmpoco 8083 dfmpo 8090 mpocurryd 8256 fvmpocurryd 8258 nfsum 15641 fsum2dlem 15720 fsumcom2 15724 nfcprod 15859 fprod2dlem 15928 fprodcom2 15932 fsumcn 24608 fsum2cn 24609 dvmptfsum 25716 itgsubst 25790 iundisj2f 32076 f1od2 32201 esumiun 33378 poimirlem26 36817 cdlemkid 40110 cdlemk19x 40117 cdlemk11t 40120 fmpocos 41362 wdom2d2 42076 dmmpossx2 47101 |
Copyright terms: Public domain | W3C validator |