MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfcsbw Structured version   Visualization version   GIF version

Theorem nfcsbw 3888
Description: Bound-variable hypothesis builder for substitution into a class. Version of nfcsb 3889 with a disjoint variable condition, which does not require ax-13 2370. (Contributed by Mario Carneiro, 12-Oct-2016.) Avoid ax-13 2370. (Revised by GG, 10-Jan-2024.)
Hypotheses
Ref Expression
nfcsbw.1 𝑥𝐴
nfcsbw.2 𝑥𝐵
Assertion
Ref Expression
nfcsbw 𝑥𝐴 / 𝑦𝐵
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)

Proof of Theorem nfcsbw
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-csb 3863 . . 3 𝐴 / 𝑦𝐵 = {𝑧[𝐴 / 𝑦]𝑧𝐵}
2 nftru 1804 . . . 4 𝑧
3 nftru 1804 . . . . 5 𝑦
4 nfcsbw.1 . . . . . 6 𝑥𝐴
54a1i 11 . . . . 5 (⊤ → 𝑥𝐴)
6 nfcsbw.2 . . . . . . 7 𝑥𝐵
76a1i 11 . . . . . 6 (⊤ → 𝑥𝐵)
87nfcrd 2885 . . . . 5 (⊤ → Ⅎ𝑥 𝑧𝐵)
93, 5, 8nfsbcdw 3774 . . . 4 (⊤ → Ⅎ𝑥[𝐴 / 𝑦]𝑧𝐵)
102, 9nfabdw 2913 . . 3 (⊤ → 𝑥{𝑧[𝐴 / 𝑦]𝑧𝐵})
111, 10nfcxfrd 2890 . 2 (⊤ → 𝑥𝐴 / 𝑦𝐵)
1211mptru 1547 1 𝑥𝐴 / 𝑦𝐵
Colors of variables: wff setvar class
Syntax hints:  wtru 1541  wcel 2109  {cab 2707  wnfc 2876  [wsbc 3753  csb 3862
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-sbc 3754  df-csb 3863
This theorem is referenced by:  cbvrabcsfw  3903  elfvmptrab1w  6995  fmptcof  7102  fvmpopr2d  7551  elovmporab1w  7636  mpomptsx  8043  dmmpossx  8045  fmpox  8046  el2mpocsbcl  8064  fmpoco  8074  dfmpo  8081  mpocurryd  8248  fvmpocurryd  8250  nfsum  15657  fsum2dlem  15736  fsumcom2  15740  nfcprod  15875  fprod2dlem  15946  fprodcom2  15950  fsumcn  24761  fsum2cn  24762  dvmptfsum  25879  itgsubst  25956  iundisj2f  32519  f1od2  32644  esumiun  34084  poimirlem26  37640  cdlemkid  40930  cdlemk19x  40937  cdlemk11t  40940  fmpocos  42222  wdom2d2  43024  dmmpossx2  48325
  Copyright terms: Public domain W3C validator