![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfcsbw | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for substitution into a class. Version of nfcsb 3935 with a disjoint variable condition, which does not require ax-13 2374. (Contributed by Mario Carneiro, 12-Oct-2016.) Avoid ax-13 2374. (Revised by GG, 10-Jan-2024.) |
Ref | Expression |
---|---|
nfcsbw.1 | ⊢ Ⅎ𝑥𝐴 |
nfcsbw.2 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
nfcsbw | ⊢ Ⅎ𝑥⦋𝐴 / 𝑦⦌𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-csb 3908 | . . 3 ⊢ ⦋𝐴 / 𝑦⦌𝐵 = {𝑧 ∣ [𝐴 / 𝑦]𝑧 ∈ 𝐵} | |
2 | nftru 1800 | . . . 4 ⊢ Ⅎ𝑧⊤ | |
3 | nftru 1800 | . . . . 5 ⊢ Ⅎ𝑦⊤ | |
4 | nfcsbw.1 | . . . . . 6 ⊢ Ⅎ𝑥𝐴 | |
5 | 4 | a1i 11 | . . . . 5 ⊢ (⊤ → Ⅎ𝑥𝐴) |
6 | nfcsbw.2 | . . . . . . 7 ⊢ Ⅎ𝑥𝐵 | |
7 | 6 | a1i 11 | . . . . . 6 ⊢ (⊤ → Ⅎ𝑥𝐵) |
8 | 7 | nfcrd 2896 | . . . . 5 ⊢ (⊤ → Ⅎ𝑥 𝑧 ∈ 𝐵) |
9 | 3, 5, 8 | nfsbcdw 3811 | . . . 4 ⊢ (⊤ → Ⅎ𝑥[𝐴 / 𝑦]𝑧 ∈ 𝐵) |
10 | 2, 9 | nfabdw 2924 | . . 3 ⊢ (⊤ → Ⅎ𝑥{𝑧 ∣ [𝐴 / 𝑦]𝑧 ∈ 𝐵}) |
11 | 1, 10 | nfcxfrd 2901 | . 2 ⊢ (⊤ → Ⅎ𝑥⦋𝐴 / 𝑦⦌𝐵) |
12 | 11 | mptru 1543 | 1 ⊢ Ⅎ𝑥⦋𝐴 / 𝑦⦌𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ⊤wtru 1537 ∈ wcel 2105 {cab 2711 Ⅎwnfc 2887 [wsbc 3790 ⦋csb 3907 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1539 df-ex 1776 df-nf 1780 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-sbc 3791 df-csb 3908 |
This theorem is referenced by: cbvrabcsfw 3951 elfvmptrab1w 7042 fmptcof 7149 fvmpopr2d 7594 elovmporab1w 7679 mpomptsx 8087 dmmpossx 8089 fmpox 8090 el2mpocsbcl 8108 fmpoco 8118 dfmpo 8125 mpocurryd 8292 fvmpocurryd 8294 nfsum 15723 fsum2dlem 15802 fsumcom2 15806 nfcprod 15941 fprod2dlem 16012 fprodcom2 16016 fsumcn 24907 fsum2cn 24908 dvmptfsum 26027 itgsubst 26104 iundisj2f 32609 f1od2 32738 esumiun 34074 poimirlem26 37632 cdlemkid 40918 cdlemk19x 40925 cdlemk11t 40928 fmpocos 42253 wdom2d2 43023 dmmpossx2 48181 |
Copyright terms: Public domain | W3C validator |