![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfcsbw | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for substitution into a class. Version of nfcsb 3949 with a disjoint variable condition, which does not require ax-13 2380. (Contributed by Mario Carneiro, 12-Oct-2016.) Avoid ax-13 2380. (Revised by GG, 10-Jan-2024.) |
Ref | Expression |
---|---|
nfcsbw.1 | ⊢ Ⅎ𝑥𝐴 |
nfcsbw.2 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
nfcsbw | ⊢ Ⅎ𝑥⦋𝐴 / 𝑦⦌𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-csb 3922 | . . 3 ⊢ ⦋𝐴 / 𝑦⦌𝐵 = {𝑧 ∣ [𝐴 / 𝑦]𝑧 ∈ 𝐵} | |
2 | nftru 1802 | . . . 4 ⊢ Ⅎ𝑧⊤ | |
3 | nftru 1802 | . . . . 5 ⊢ Ⅎ𝑦⊤ | |
4 | nfcsbw.1 | . . . . . 6 ⊢ Ⅎ𝑥𝐴 | |
5 | 4 | a1i 11 | . . . . 5 ⊢ (⊤ → Ⅎ𝑥𝐴) |
6 | nfcsbw.2 | . . . . . . 7 ⊢ Ⅎ𝑥𝐵 | |
7 | 6 | a1i 11 | . . . . . 6 ⊢ (⊤ → Ⅎ𝑥𝐵) |
8 | 7 | nfcrd 2902 | . . . . 5 ⊢ (⊤ → Ⅎ𝑥 𝑧 ∈ 𝐵) |
9 | 3, 5, 8 | nfsbcdw 3825 | . . . 4 ⊢ (⊤ → Ⅎ𝑥[𝐴 / 𝑦]𝑧 ∈ 𝐵) |
10 | 2, 9 | nfabdw 2932 | . . 3 ⊢ (⊤ → Ⅎ𝑥{𝑧 ∣ [𝐴 / 𝑦]𝑧 ∈ 𝐵}) |
11 | 1, 10 | nfcxfrd 2907 | . 2 ⊢ (⊤ → Ⅎ𝑥⦋𝐴 / 𝑦⦌𝐵) |
12 | 11 | mptru 1544 | 1 ⊢ Ⅎ𝑥⦋𝐴 / 𝑦⦌𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ⊤wtru 1538 ∈ wcel 2108 {cab 2717 Ⅎwnfc 2893 [wsbc 3804 ⦋csb 3921 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-sbc 3805 df-csb 3922 |
This theorem is referenced by: cbvrabcsfw 3965 elfvmptrab1w 7056 fmptcof 7164 fvmpopr2d 7612 elovmporab1w 7697 mpomptsx 8105 dmmpossx 8107 fmpox 8108 el2mpocsbcl 8126 fmpoco 8136 dfmpo 8143 mpocurryd 8310 fvmpocurryd 8312 nfsum 15739 fsum2dlem 15818 fsumcom2 15822 nfcprod 15957 fprod2dlem 16028 fprodcom2 16032 fsumcn 24913 fsum2cn 24914 dvmptfsum 26033 itgsubst 26110 iundisj2f 32612 f1od2 32735 esumiun 34058 poimirlem26 37606 cdlemkid 40893 cdlemk19x 40900 cdlemk11t 40903 fmpocos 42229 wdom2d2 42992 dmmpossx2 48061 |
Copyright terms: Public domain | W3C validator |