| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfcsbw | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for substitution into a class. Version of nfcsb 3906 with a disjoint variable condition, which does not require ax-13 2375. (Contributed by Mario Carneiro, 12-Oct-2016.) Avoid ax-13 2375. (Revised by GG, 10-Jan-2024.) |
| Ref | Expression |
|---|---|
| nfcsbw.1 | ⊢ Ⅎ𝑥𝐴 |
| nfcsbw.2 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| nfcsbw | ⊢ Ⅎ𝑥⦋𝐴 / 𝑦⦌𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-csb 3880 | . . 3 ⊢ ⦋𝐴 / 𝑦⦌𝐵 = {𝑧 ∣ [𝐴 / 𝑦]𝑧 ∈ 𝐵} | |
| 2 | nftru 1803 | . . . 4 ⊢ Ⅎ𝑧⊤ | |
| 3 | nftru 1803 | . . . . 5 ⊢ Ⅎ𝑦⊤ | |
| 4 | nfcsbw.1 | . . . . . 6 ⊢ Ⅎ𝑥𝐴 | |
| 5 | 4 | a1i 11 | . . . . 5 ⊢ (⊤ → Ⅎ𝑥𝐴) |
| 6 | nfcsbw.2 | . . . . . . 7 ⊢ Ⅎ𝑥𝐵 | |
| 7 | 6 | a1i 11 | . . . . . 6 ⊢ (⊤ → Ⅎ𝑥𝐵) |
| 8 | 7 | nfcrd 2891 | . . . . 5 ⊢ (⊤ → Ⅎ𝑥 𝑧 ∈ 𝐵) |
| 9 | 3, 5, 8 | nfsbcdw 3791 | . . . 4 ⊢ (⊤ → Ⅎ𝑥[𝐴 / 𝑦]𝑧 ∈ 𝐵) |
| 10 | 2, 9 | nfabdw 2919 | . . 3 ⊢ (⊤ → Ⅎ𝑥{𝑧 ∣ [𝐴 / 𝑦]𝑧 ∈ 𝐵}) |
| 11 | 1, 10 | nfcxfrd 2896 | . 2 ⊢ (⊤ → Ⅎ𝑥⦋𝐴 / 𝑦⦌𝐵) |
| 12 | 11 | mptru 1546 | 1 ⊢ Ⅎ𝑥⦋𝐴 / 𝑦⦌𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: ⊤wtru 1540 ∈ wcel 2107 {cab 2712 Ⅎwnfc 2882 [wsbc 3770 ⦋csb 3879 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-sbc 3771 df-csb 3880 |
| This theorem is referenced by: cbvrabcsfw 3920 elfvmptrab1w 7023 fmptcof 7130 fvmpopr2d 7577 elovmporab1w 7662 mpomptsx 8071 dmmpossx 8073 fmpox 8074 el2mpocsbcl 8092 fmpoco 8102 dfmpo 8109 mpocurryd 8276 fvmpocurryd 8278 nfsum 15709 fsum2dlem 15788 fsumcom2 15792 nfcprod 15927 fprod2dlem 15998 fprodcom2 16002 fsumcn 24830 fsum2cn 24831 dvmptfsum 25949 itgsubst 26026 iundisj2f 32538 f1od2 32667 esumiun 34054 poimirlem26 37612 cdlemkid 40897 cdlemk19x 40904 cdlemk11t 40907 fmpocos 42233 wdom2d2 43010 dmmpossx2 48211 |
| Copyright terms: Public domain | W3C validator |