MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfcsbw Structured version   Visualization version   GIF version

Theorem nfcsbw 3934
Description: Bound-variable hypothesis builder for substitution into a class. Version of nfcsb 3935 with a disjoint variable condition, which does not require ax-13 2374. (Contributed by Mario Carneiro, 12-Oct-2016.) Avoid ax-13 2374. (Revised by GG, 10-Jan-2024.)
Hypotheses
Ref Expression
nfcsbw.1 𝑥𝐴
nfcsbw.2 𝑥𝐵
Assertion
Ref Expression
nfcsbw 𝑥𝐴 / 𝑦𝐵
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)

Proof of Theorem nfcsbw
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-csb 3908 . . 3 𝐴 / 𝑦𝐵 = {𝑧[𝐴 / 𝑦]𝑧𝐵}
2 nftru 1800 . . . 4 𝑧
3 nftru 1800 . . . . 5 𝑦
4 nfcsbw.1 . . . . . 6 𝑥𝐴
54a1i 11 . . . . 5 (⊤ → 𝑥𝐴)
6 nfcsbw.2 . . . . . . 7 𝑥𝐵
76a1i 11 . . . . . 6 (⊤ → 𝑥𝐵)
87nfcrd 2896 . . . . 5 (⊤ → Ⅎ𝑥 𝑧𝐵)
93, 5, 8nfsbcdw 3811 . . . 4 (⊤ → Ⅎ𝑥[𝐴 / 𝑦]𝑧𝐵)
102, 9nfabdw 2924 . . 3 (⊤ → 𝑥{𝑧[𝐴 / 𝑦]𝑧𝐵})
111, 10nfcxfrd 2901 . 2 (⊤ → 𝑥𝐴 / 𝑦𝐵)
1211mptru 1543 1 𝑥𝐴 / 𝑦𝐵
Colors of variables: wff setvar class
Syntax hints:  wtru 1537  wcel 2105  {cab 2711  wnfc 2887  [wsbc 3790  csb 3907
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1539  df-ex 1776  df-nf 1780  df-sb 2062  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-sbc 3791  df-csb 3908
This theorem is referenced by:  cbvrabcsfw  3951  elfvmptrab1w  7042  fmptcof  7149  fvmpopr2d  7594  elovmporab1w  7679  mpomptsx  8087  dmmpossx  8089  fmpox  8090  el2mpocsbcl  8108  fmpoco  8118  dfmpo  8125  mpocurryd  8292  fvmpocurryd  8294  nfsum  15723  fsum2dlem  15802  fsumcom2  15806  nfcprod  15941  fprod2dlem  16012  fprodcom2  16016  fsumcn  24907  fsum2cn  24908  dvmptfsum  26027  itgsubst  26104  iundisj2f  32609  f1od2  32738  esumiun  34074  poimirlem26  37632  cdlemkid  40918  cdlemk19x  40925  cdlemk11t  40928  fmpocos  42253  wdom2d2  43023  dmmpossx2  48181
  Copyright terms: Public domain W3C validator