MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfvmptrab1 Structured version   Visualization version   GIF version

Theorem elfvmptrab1 7044
Description: Implications for the value of a function defined by the maps-to notation with a class abstraction as a result having an element. Here, the base set of the class abstraction depends on the argument of the function. Usage of this theorem is discouraged because it depends on ax-13 2375. Use the weaker elfvmptrab1w 7043 when possible. (Contributed by Alexander van der Vekens, 15-Jul-2018.) (New usage is discouraged.)
Hypotheses
Ref Expression
elfvmptrab1.f 𝐹 = (𝑥𝑉 ↦ {𝑦𝑥 / 𝑚𝑀𝜑})
elfvmptrab1.v (𝑋𝑉𝑋 / 𝑚𝑀 ∈ V)
Assertion
Ref Expression
elfvmptrab1 (𝑌 ∈ (𝐹𝑋) → (𝑋𝑉𝑌𝑋 / 𝑚𝑀))
Distinct variable groups:   𝑥,𝑀,𝑦   𝑥,𝑉   𝑥,𝑋,𝑦   𝑦,𝑌   𝑦,𝑚
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑚)   𝐹(𝑥,𝑦,𝑚)   𝑀(𝑚)   𝑉(𝑦,𝑚)   𝑋(𝑚)   𝑌(𝑥,𝑚)

Proof of Theorem elfvmptrab1
StepHypRef Expression
1 ne0i 4347 . . 3 (𝑌 ∈ (𝐹𝑋) → (𝐹𝑋) ≠ ∅)
2 ndmfv 6942 . . . 4 𝑋 ∈ dom 𝐹 → (𝐹𝑋) = ∅)
32necon1ai 2966 . . 3 ((𝐹𝑋) ≠ ∅ → 𝑋 ∈ dom 𝐹)
4 elfvmptrab1.f . . . . . . . 8 𝐹 = (𝑥𝑉 ↦ {𝑦𝑥 / 𝑚𝑀𝜑})
54dmmptss 6263 . . . . . . 7 dom 𝐹𝑉
65sseli 3991 . . . . . 6 (𝑋 ∈ dom 𝐹𝑋𝑉)
7 elfvmptrab1.v . . . . . . 7 (𝑋𝑉𝑋 / 𝑚𝑀 ∈ V)
8 rabexg 5343 . . . . . . 7 (𝑋 / 𝑚𝑀 ∈ V → {𝑦𝑋 / 𝑚𝑀[𝑋 / 𝑥]𝜑} ∈ V)
96, 7, 83syl 18 . . . . . 6 (𝑋 ∈ dom 𝐹 → {𝑦𝑋 / 𝑚𝑀[𝑋 / 𝑥]𝜑} ∈ V)
10 nfcv 2903 . . . . . . 7 𝑥𝑋
11 nfsbc1v 3811 . . . . . . . 8 𝑥[𝑋 / 𝑥]𝜑
12 nfcv 2903 . . . . . . . . 9 𝑥𝑀
1310, 12nfcsb 3936 . . . . . . . 8 𝑥𝑋 / 𝑚𝑀
1411, 13nfrab 3476 . . . . . . 7 𝑥{𝑦𝑋 / 𝑚𝑀[𝑋 / 𝑥]𝜑}
15 csbeq1 3911 . . . . . . . 8 (𝑥 = 𝑋𝑥 / 𝑚𝑀 = 𝑋 / 𝑚𝑀)
16 sbceq1a 3802 . . . . . . . 8 (𝑥 = 𝑋 → (𝜑[𝑋 / 𝑥]𝜑))
1715, 16rabeqbidv 3452 . . . . . . 7 (𝑥 = 𝑋 → {𝑦𝑥 / 𝑚𝑀𝜑} = {𝑦𝑋 / 𝑚𝑀[𝑋 / 𝑥]𝜑})
1810, 14, 17, 4fvmptf 7037 . . . . . 6 ((𝑋𝑉 ∧ {𝑦𝑋 / 𝑚𝑀[𝑋 / 𝑥]𝜑} ∈ V) → (𝐹𝑋) = {𝑦𝑋 / 𝑚𝑀[𝑋 / 𝑥]𝜑})
196, 9, 18syl2anc 584 . . . . 5 (𝑋 ∈ dom 𝐹 → (𝐹𝑋) = {𝑦𝑋 / 𝑚𝑀[𝑋 / 𝑥]𝜑})
2019eleq2d 2825 . . . 4 (𝑋 ∈ dom 𝐹 → (𝑌 ∈ (𝐹𝑋) ↔ 𝑌 ∈ {𝑦𝑋 / 𝑚𝑀[𝑋 / 𝑥]𝜑}))
21 elrabi 3690 . . . . . 6 (𝑌 ∈ {𝑦𝑋 / 𝑚𝑀[𝑋 / 𝑥]𝜑} → 𝑌𝑋 / 𝑚𝑀)
226, 21anim12i 613 . . . . 5 ((𝑋 ∈ dom 𝐹𝑌 ∈ {𝑦𝑋 / 𝑚𝑀[𝑋 / 𝑥]𝜑}) → (𝑋𝑉𝑌𝑋 / 𝑚𝑀))
2322ex 412 . . . 4 (𝑋 ∈ dom 𝐹 → (𝑌 ∈ {𝑦𝑋 / 𝑚𝑀[𝑋 / 𝑥]𝜑} → (𝑋𝑉𝑌𝑋 / 𝑚𝑀)))
2420, 23sylbid 240 . . 3 (𝑋 ∈ dom 𝐹 → (𝑌 ∈ (𝐹𝑋) → (𝑋𝑉𝑌𝑋 / 𝑚𝑀)))
251, 3, 243syl 18 . 2 (𝑌 ∈ (𝐹𝑋) → (𝑌 ∈ (𝐹𝑋) → (𝑋𝑉𝑌𝑋 / 𝑚𝑀)))
2625pm2.43i 52 1 (𝑌 ∈ (𝐹𝑋) → (𝑋𝑉𝑌𝑋 / 𝑚𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  wne 2938  {crab 3433  Vcvv 3478  [wsbc 3791  csb 3908  c0 4339  cmpt 5231  dom cdm 5689  cfv 6563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-13 2375  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fv 6571
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator