MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfvmptrab1 Structured version   Visualization version   GIF version

Theorem elfvmptrab1 7019
Description: Implications for the value of a function defined by the maps-to notation with a class abstraction as a result having an element. Here, the base set of the class abstraction depends on the argument of the function. Usage of this theorem is discouraged because it depends on ax-13 2365. Use the weaker elfvmptrab1w 7018 when possible. (Contributed by Alexander van der Vekens, 15-Jul-2018.) (New usage is discouraged.)
Hypotheses
Ref Expression
elfvmptrab1.f 𝐹 = (𝑥𝑉 ↦ {𝑦𝑥 / 𝑚𝑀𝜑})
elfvmptrab1.v (𝑋𝑉𝑋 / 𝑚𝑀 ∈ V)
Assertion
Ref Expression
elfvmptrab1 (𝑌 ∈ (𝐹𝑋) → (𝑋𝑉𝑌𝑋 / 𝑚𝑀))
Distinct variable groups:   𝑥,𝑀,𝑦   𝑥,𝑉   𝑥,𝑋,𝑦   𝑦,𝑌   𝑦,𝑚
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑚)   𝐹(𝑥,𝑦,𝑚)   𝑀(𝑚)   𝑉(𝑦,𝑚)   𝑋(𝑚)   𝑌(𝑥,𝑚)

Proof of Theorem elfvmptrab1
StepHypRef Expression
1 ne0i 4329 . . 3 (𝑌 ∈ (𝐹𝑋) → (𝐹𝑋) ≠ ∅)
2 ndmfv 6920 . . . 4 𝑋 ∈ dom 𝐹 → (𝐹𝑋) = ∅)
32necon1ai 2962 . . 3 ((𝐹𝑋) ≠ ∅ → 𝑋 ∈ dom 𝐹)
4 elfvmptrab1.f . . . . . . . 8 𝐹 = (𝑥𝑉 ↦ {𝑦𝑥 / 𝑚𝑀𝜑})
54dmmptss 6234 . . . . . . 7 dom 𝐹𝑉
65sseli 3973 . . . . . 6 (𝑋 ∈ dom 𝐹𝑋𝑉)
7 elfvmptrab1.v . . . . . . 7 (𝑋𝑉𝑋 / 𝑚𝑀 ∈ V)
8 rabexg 5324 . . . . . . 7 (𝑋 / 𝑚𝑀 ∈ V → {𝑦𝑋 / 𝑚𝑀[𝑋 / 𝑥]𝜑} ∈ V)
96, 7, 83syl 18 . . . . . 6 (𝑋 ∈ dom 𝐹 → {𝑦𝑋 / 𝑚𝑀[𝑋 / 𝑥]𝜑} ∈ V)
10 nfcv 2897 . . . . . . 7 𝑥𝑋
11 nfsbc1v 3792 . . . . . . . 8 𝑥[𝑋 / 𝑥]𝜑
12 nfcv 2897 . . . . . . . . 9 𝑥𝑀
1310, 12nfcsb 3916 . . . . . . . 8 𝑥𝑋 / 𝑚𝑀
1411, 13nfrab 3466 . . . . . . 7 𝑥{𝑦𝑋 / 𝑚𝑀[𝑋 / 𝑥]𝜑}
15 csbeq1 3891 . . . . . . . 8 (𝑥 = 𝑋𝑥 / 𝑚𝑀 = 𝑋 / 𝑚𝑀)
16 sbceq1a 3783 . . . . . . . 8 (𝑥 = 𝑋 → (𝜑[𝑋 / 𝑥]𝜑))
1715, 16rabeqbidv 3443 . . . . . . 7 (𝑥 = 𝑋 → {𝑦𝑥 / 𝑚𝑀𝜑} = {𝑦𝑋 / 𝑚𝑀[𝑋 / 𝑥]𝜑})
1810, 14, 17, 4fvmptf 7013 . . . . . 6 ((𝑋𝑉 ∧ {𝑦𝑋 / 𝑚𝑀[𝑋 / 𝑥]𝜑} ∈ V) → (𝐹𝑋) = {𝑦𝑋 / 𝑚𝑀[𝑋 / 𝑥]𝜑})
196, 9, 18syl2anc 583 . . . . 5 (𝑋 ∈ dom 𝐹 → (𝐹𝑋) = {𝑦𝑋 / 𝑚𝑀[𝑋 / 𝑥]𝜑})
2019eleq2d 2813 . . . 4 (𝑋 ∈ dom 𝐹 → (𝑌 ∈ (𝐹𝑋) ↔ 𝑌 ∈ {𝑦𝑋 / 𝑚𝑀[𝑋 / 𝑥]𝜑}))
21 elrabi 3672 . . . . . 6 (𝑌 ∈ {𝑦𝑋 / 𝑚𝑀[𝑋 / 𝑥]𝜑} → 𝑌𝑋 / 𝑚𝑀)
226, 21anim12i 612 . . . . 5 ((𝑋 ∈ dom 𝐹𝑌 ∈ {𝑦𝑋 / 𝑚𝑀[𝑋 / 𝑥]𝜑}) → (𝑋𝑉𝑌𝑋 / 𝑚𝑀))
2322ex 412 . . . 4 (𝑋 ∈ dom 𝐹 → (𝑌 ∈ {𝑦𝑋 / 𝑚𝑀[𝑋 / 𝑥]𝜑} → (𝑋𝑉𝑌𝑋 / 𝑚𝑀)))
2420, 23sylbid 239 . . 3 (𝑋 ∈ dom 𝐹 → (𝑌 ∈ (𝐹𝑋) → (𝑋𝑉𝑌𝑋 / 𝑚𝑀)))
251, 3, 243syl 18 . 2 (𝑌 ∈ (𝐹𝑋) → (𝑌 ∈ (𝐹𝑋) → (𝑋𝑉𝑌𝑋 / 𝑚𝑀)))
2625pm2.43i 52 1 (𝑌 ∈ (𝐹𝑋) → (𝑋𝑉𝑌𝑋 / 𝑚𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1533  wcel 2098  wne 2934  {crab 3426  Vcvv 3468  [wsbc 3772  csb 3888  c0 4317  cmpt 5224  dom cdm 5669  cfv 6537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-13 2365  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pr 5420
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6489  df-fun 6539  df-fv 6545
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator