Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elfvmptrab1 | Structured version Visualization version GIF version |
Description: Implications for the value of a function defined by the maps-to notation with a class abstraction as a result having an element. Here, the base set of the class abstraction depends on the argument of the function. Usage of this theorem is discouraged because it depends on ax-13 2372. Use the weaker elfvmptrab1w 6883 when possible. (Contributed by Alexander van der Vekens, 15-Jul-2018.) (New usage is discouraged.) |
Ref | Expression |
---|---|
elfvmptrab1.f | ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ {𝑦 ∈ ⦋𝑥 / 𝑚⦌𝑀 ∣ 𝜑}) |
elfvmptrab1.v | ⊢ (𝑋 ∈ 𝑉 → ⦋𝑋 / 𝑚⦌𝑀 ∈ V) |
Ref | Expression |
---|---|
elfvmptrab1 | ⊢ (𝑌 ∈ (𝐹‘𝑋) → (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ ⦋𝑋 / 𝑚⦌𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ne0i 4265 | . . 3 ⊢ (𝑌 ∈ (𝐹‘𝑋) → (𝐹‘𝑋) ≠ ∅) | |
2 | ndmfv 6786 | . . . 4 ⊢ (¬ 𝑋 ∈ dom 𝐹 → (𝐹‘𝑋) = ∅) | |
3 | 2 | necon1ai 2970 | . . 3 ⊢ ((𝐹‘𝑋) ≠ ∅ → 𝑋 ∈ dom 𝐹) |
4 | elfvmptrab1.f | . . . . . . . 8 ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ {𝑦 ∈ ⦋𝑥 / 𝑚⦌𝑀 ∣ 𝜑}) | |
5 | 4 | dmmptss 6133 | . . . . . . 7 ⊢ dom 𝐹 ⊆ 𝑉 |
6 | 5 | sseli 3913 | . . . . . 6 ⊢ (𝑋 ∈ dom 𝐹 → 𝑋 ∈ 𝑉) |
7 | elfvmptrab1.v | . . . . . . 7 ⊢ (𝑋 ∈ 𝑉 → ⦋𝑋 / 𝑚⦌𝑀 ∈ V) | |
8 | rabexg 5250 | . . . . . . 7 ⊢ (⦋𝑋 / 𝑚⦌𝑀 ∈ V → {𝑦 ∈ ⦋𝑋 / 𝑚⦌𝑀 ∣ [𝑋 / 𝑥]𝜑} ∈ V) | |
9 | 6, 7, 8 | 3syl 18 | . . . . . 6 ⊢ (𝑋 ∈ dom 𝐹 → {𝑦 ∈ ⦋𝑋 / 𝑚⦌𝑀 ∣ [𝑋 / 𝑥]𝜑} ∈ V) |
10 | nfcv 2906 | . . . . . . 7 ⊢ Ⅎ𝑥𝑋 | |
11 | nfsbc1v 3731 | . . . . . . . 8 ⊢ Ⅎ𝑥[𝑋 / 𝑥]𝜑 | |
12 | nfcv 2906 | . . . . . . . . 9 ⊢ Ⅎ𝑥𝑀 | |
13 | 10, 12 | nfcsb 3856 | . . . . . . . 8 ⊢ Ⅎ𝑥⦋𝑋 / 𝑚⦌𝑀 |
14 | 11, 13 | nfrab 3312 | . . . . . . 7 ⊢ Ⅎ𝑥{𝑦 ∈ ⦋𝑋 / 𝑚⦌𝑀 ∣ [𝑋 / 𝑥]𝜑} |
15 | csbeq1 3831 | . . . . . . . 8 ⊢ (𝑥 = 𝑋 → ⦋𝑥 / 𝑚⦌𝑀 = ⦋𝑋 / 𝑚⦌𝑀) | |
16 | sbceq1a 3722 | . . . . . . . 8 ⊢ (𝑥 = 𝑋 → (𝜑 ↔ [𝑋 / 𝑥]𝜑)) | |
17 | 15, 16 | rabeqbidv 3410 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → {𝑦 ∈ ⦋𝑥 / 𝑚⦌𝑀 ∣ 𝜑} = {𝑦 ∈ ⦋𝑋 / 𝑚⦌𝑀 ∣ [𝑋 / 𝑥]𝜑}) |
18 | 10, 14, 17, 4 | fvmptf 6878 | . . . . . 6 ⊢ ((𝑋 ∈ 𝑉 ∧ {𝑦 ∈ ⦋𝑋 / 𝑚⦌𝑀 ∣ [𝑋 / 𝑥]𝜑} ∈ V) → (𝐹‘𝑋) = {𝑦 ∈ ⦋𝑋 / 𝑚⦌𝑀 ∣ [𝑋 / 𝑥]𝜑}) |
19 | 6, 9, 18 | syl2anc 583 | . . . . 5 ⊢ (𝑋 ∈ dom 𝐹 → (𝐹‘𝑋) = {𝑦 ∈ ⦋𝑋 / 𝑚⦌𝑀 ∣ [𝑋 / 𝑥]𝜑}) |
20 | 19 | eleq2d 2824 | . . . 4 ⊢ (𝑋 ∈ dom 𝐹 → (𝑌 ∈ (𝐹‘𝑋) ↔ 𝑌 ∈ {𝑦 ∈ ⦋𝑋 / 𝑚⦌𝑀 ∣ [𝑋 / 𝑥]𝜑})) |
21 | elrabi 3611 | . . . . . 6 ⊢ (𝑌 ∈ {𝑦 ∈ ⦋𝑋 / 𝑚⦌𝑀 ∣ [𝑋 / 𝑥]𝜑} → 𝑌 ∈ ⦋𝑋 / 𝑚⦌𝑀) | |
22 | 6, 21 | anim12i 612 | . . . . 5 ⊢ ((𝑋 ∈ dom 𝐹 ∧ 𝑌 ∈ {𝑦 ∈ ⦋𝑋 / 𝑚⦌𝑀 ∣ [𝑋 / 𝑥]𝜑}) → (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ ⦋𝑋 / 𝑚⦌𝑀)) |
23 | 22 | ex 412 | . . . 4 ⊢ (𝑋 ∈ dom 𝐹 → (𝑌 ∈ {𝑦 ∈ ⦋𝑋 / 𝑚⦌𝑀 ∣ [𝑋 / 𝑥]𝜑} → (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ ⦋𝑋 / 𝑚⦌𝑀))) |
24 | 20, 23 | sylbid 239 | . . 3 ⊢ (𝑋 ∈ dom 𝐹 → (𝑌 ∈ (𝐹‘𝑋) → (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ ⦋𝑋 / 𝑚⦌𝑀))) |
25 | 1, 3, 24 | 3syl 18 | . 2 ⊢ (𝑌 ∈ (𝐹‘𝑋) → (𝑌 ∈ (𝐹‘𝑋) → (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ ⦋𝑋 / 𝑚⦌𝑀))) |
26 | 25 | pm2.43i 52 | 1 ⊢ (𝑌 ∈ (𝐹‘𝑋) → (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ ⦋𝑋 / 𝑚⦌𝑀)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 {crab 3067 Vcvv 3422 [wsbc 3711 ⦋csb 3828 ∅c0 4253 ↦ cmpt 5153 dom cdm 5580 ‘cfv 6418 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-13 2372 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fv 6426 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |