| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elfvmptrab1 | Structured version Visualization version GIF version | ||
| Description: Implications for the value of a function defined by the maps-to notation with a class abstraction as a result having an element. Here, the base set of the class abstraction depends on the argument of the function. Usage of this theorem is discouraged because it depends on ax-13 2377. Use the weaker elfvmptrab1w 7043 when possible. (Contributed by Alexander van der Vekens, 15-Jul-2018.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| elfvmptrab1.f | ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ {𝑦 ∈ ⦋𝑥 / 𝑚⦌𝑀 ∣ 𝜑}) |
| elfvmptrab1.v | ⊢ (𝑋 ∈ 𝑉 → ⦋𝑋 / 𝑚⦌𝑀 ∈ V) |
| Ref | Expression |
|---|---|
| elfvmptrab1 | ⊢ (𝑌 ∈ (𝐹‘𝑋) → (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ ⦋𝑋 / 𝑚⦌𝑀)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ne0i 4341 | . . 3 ⊢ (𝑌 ∈ (𝐹‘𝑋) → (𝐹‘𝑋) ≠ ∅) | |
| 2 | ndmfv 6941 | . . . 4 ⊢ (¬ 𝑋 ∈ dom 𝐹 → (𝐹‘𝑋) = ∅) | |
| 3 | 2 | necon1ai 2968 | . . 3 ⊢ ((𝐹‘𝑋) ≠ ∅ → 𝑋 ∈ dom 𝐹) |
| 4 | elfvmptrab1.f | . . . . . . . 8 ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ {𝑦 ∈ ⦋𝑥 / 𝑚⦌𝑀 ∣ 𝜑}) | |
| 5 | 4 | dmmptss 6261 | . . . . . . 7 ⊢ dom 𝐹 ⊆ 𝑉 |
| 6 | 5 | sseli 3979 | . . . . . 6 ⊢ (𝑋 ∈ dom 𝐹 → 𝑋 ∈ 𝑉) |
| 7 | elfvmptrab1.v | . . . . . . 7 ⊢ (𝑋 ∈ 𝑉 → ⦋𝑋 / 𝑚⦌𝑀 ∈ V) | |
| 8 | rabexg 5337 | . . . . . . 7 ⊢ (⦋𝑋 / 𝑚⦌𝑀 ∈ V → {𝑦 ∈ ⦋𝑋 / 𝑚⦌𝑀 ∣ [𝑋 / 𝑥]𝜑} ∈ V) | |
| 9 | 6, 7, 8 | 3syl 18 | . . . . . 6 ⊢ (𝑋 ∈ dom 𝐹 → {𝑦 ∈ ⦋𝑋 / 𝑚⦌𝑀 ∣ [𝑋 / 𝑥]𝜑} ∈ V) |
| 10 | nfcv 2905 | . . . . . . 7 ⊢ Ⅎ𝑥𝑋 | |
| 11 | nfsbc1v 3808 | . . . . . . . 8 ⊢ Ⅎ𝑥[𝑋 / 𝑥]𝜑 | |
| 12 | nfcv 2905 | . . . . . . . . 9 ⊢ Ⅎ𝑥𝑀 | |
| 13 | 10, 12 | nfcsb 3926 | . . . . . . . 8 ⊢ Ⅎ𝑥⦋𝑋 / 𝑚⦌𝑀 |
| 14 | 11, 13 | nfrab 3478 | . . . . . . 7 ⊢ Ⅎ𝑥{𝑦 ∈ ⦋𝑋 / 𝑚⦌𝑀 ∣ [𝑋 / 𝑥]𝜑} |
| 15 | csbeq1 3902 | . . . . . . . 8 ⊢ (𝑥 = 𝑋 → ⦋𝑥 / 𝑚⦌𝑀 = ⦋𝑋 / 𝑚⦌𝑀) | |
| 16 | sbceq1a 3799 | . . . . . . . 8 ⊢ (𝑥 = 𝑋 → (𝜑 ↔ [𝑋 / 𝑥]𝜑)) | |
| 17 | 15, 16 | rabeqbidv 3455 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → {𝑦 ∈ ⦋𝑥 / 𝑚⦌𝑀 ∣ 𝜑} = {𝑦 ∈ ⦋𝑋 / 𝑚⦌𝑀 ∣ [𝑋 / 𝑥]𝜑}) |
| 18 | 10, 14, 17, 4 | fvmptf 7037 | . . . . . 6 ⊢ ((𝑋 ∈ 𝑉 ∧ {𝑦 ∈ ⦋𝑋 / 𝑚⦌𝑀 ∣ [𝑋 / 𝑥]𝜑} ∈ V) → (𝐹‘𝑋) = {𝑦 ∈ ⦋𝑋 / 𝑚⦌𝑀 ∣ [𝑋 / 𝑥]𝜑}) |
| 19 | 6, 9, 18 | syl2anc 584 | . . . . 5 ⊢ (𝑋 ∈ dom 𝐹 → (𝐹‘𝑋) = {𝑦 ∈ ⦋𝑋 / 𝑚⦌𝑀 ∣ [𝑋 / 𝑥]𝜑}) |
| 20 | 19 | eleq2d 2827 | . . . 4 ⊢ (𝑋 ∈ dom 𝐹 → (𝑌 ∈ (𝐹‘𝑋) ↔ 𝑌 ∈ {𝑦 ∈ ⦋𝑋 / 𝑚⦌𝑀 ∣ [𝑋 / 𝑥]𝜑})) |
| 21 | elrabi 3687 | . . . . . 6 ⊢ (𝑌 ∈ {𝑦 ∈ ⦋𝑋 / 𝑚⦌𝑀 ∣ [𝑋 / 𝑥]𝜑} → 𝑌 ∈ ⦋𝑋 / 𝑚⦌𝑀) | |
| 22 | 6, 21 | anim12i 613 | . . . . 5 ⊢ ((𝑋 ∈ dom 𝐹 ∧ 𝑌 ∈ {𝑦 ∈ ⦋𝑋 / 𝑚⦌𝑀 ∣ [𝑋 / 𝑥]𝜑}) → (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ ⦋𝑋 / 𝑚⦌𝑀)) |
| 23 | 22 | ex 412 | . . . 4 ⊢ (𝑋 ∈ dom 𝐹 → (𝑌 ∈ {𝑦 ∈ ⦋𝑋 / 𝑚⦌𝑀 ∣ [𝑋 / 𝑥]𝜑} → (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ ⦋𝑋 / 𝑚⦌𝑀))) |
| 24 | 20, 23 | sylbid 240 | . . 3 ⊢ (𝑋 ∈ dom 𝐹 → (𝑌 ∈ (𝐹‘𝑋) → (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ ⦋𝑋 / 𝑚⦌𝑀))) |
| 25 | 1, 3, 24 | 3syl 18 | . 2 ⊢ (𝑌 ∈ (𝐹‘𝑋) → (𝑌 ∈ (𝐹‘𝑋) → (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ ⦋𝑋 / 𝑚⦌𝑀))) |
| 26 | 25 | pm2.43i 52 | 1 ⊢ (𝑌 ∈ (𝐹‘𝑋) → (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ ⦋𝑋 / 𝑚⦌𝑀)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ≠ wne 2940 {crab 3436 Vcvv 3480 [wsbc 3788 ⦋csb 3899 ∅c0 4333 ↦ cmpt 5225 dom cdm 5685 ‘cfv 6561 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-13 2377 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fv 6569 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |