Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elfvmptrab1 | Structured version Visualization version GIF version |
Description: Implications for the value of a function defined by the maps-to notation with a class abstraction as a result having an element. Here, the base set of the class abstraction depends on the argument of the function. Usage of this theorem is discouraged because it depends on ax-13 2371. Use the weaker elfvmptrab1w 6844 when possible. (Contributed by Alexander van der Vekens, 15-Jul-2018.) (New usage is discouraged.) |
Ref | Expression |
---|---|
elfvmptrab1.f | ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ {𝑦 ∈ ⦋𝑥 / 𝑚⦌𝑀 ∣ 𝜑}) |
elfvmptrab1.v | ⊢ (𝑋 ∈ 𝑉 → ⦋𝑋 / 𝑚⦌𝑀 ∈ V) |
Ref | Expression |
---|---|
elfvmptrab1 | ⊢ (𝑌 ∈ (𝐹‘𝑋) → (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ ⦋𝑋 / 𝑚⦌𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ne0i 4249 | . . 3 ⊢ (𝑌 ∈ (𝐹‘𝑋) → (𝐹‘𝑋) ≠ ∅) | |
2 | ndmfv 6747 | . . . 4 ⊢ (¬ 𝑋 ∈ dom 𝐹 → (𝐹‘𝑋) = ∅) | |
3 | 2 | necon1ai 2968 | . . 3 ⊢ ((𝐹‘𝑋) ≠ ∅ → 𝑋 ∈ dom 𝐹) |
4 | elfvmptrab1.f | . . . . . . . 8 ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ {𝑦 ∈ ⦋𝑥 / 𝑚⦌𝑀 ∣ 𝜑}) | |
5 | 4 | dmmptss 6104 | . . . . . . 7 ⊢ dom 𝐹 ⊆ 𝑉 |
6 | 5 | sseli 3896 | . . . . . 6 ⊢ (𝑋 ∈ dom 𝐹 → 𝑋 ∈ 𝑉) |
7 | elfvmptrab1.v | . . . . . . 7 ⊢ (𝑋 ∈ 𝑉 → ⦋𝑋 / 𝑚⦌𝑀 ∈ V) | |
8 | rabexg 5224 | . . . . . . 7 ⊢ (⦋𝑋 / 𝑚⦌𝑀 ∈ V → {𝑦 ∈ ⦋𝑋 / 𝑚⦌𝑀 ∣ [𝑋 / 𝑥]𝜑} ∈ V) | |
9 | 6, 7, 8 | 3syl 18 | . . . . . 6 ⊢ (𝑋 ∈ dom 𝐹 → {𝑦 ∈ ⦋𝑋 / 𝑚⦌𝑀 ∣ [𝑋 / 𝑥]𝜑} ∈ V) |
10 | nfcv 2904 | . . . . . . 7 ⊢ Ⅎ𝑥𝑋 | |
11 | nfsbc1v 3714 | . . . . . . . 8 ⊢ Ⅎ𝑥[𝑋 / 𝑥]𝜑 | |
12 | nfcv 2904 | . . . . . . . . 9 ⊢ Ⅎ𝑥𝑀 | |
13 | 10, 12 | nfcsb 3839 | . . . . . . . 8 ⊢ Ⅎ𝑥⦋𝑋 / 𝑚⦌𝑀 |
14 | 11, 13 | nfrab 3298 | . . . . . . 7 ⊢ Ⅎ𝑥{𝑦 ∈ ⦋𝑋 / 𝑚⦌𝑀 ∣ [𝑋 / 𝑥]𝜑} |
15 | csbeq1 3814 | . . . . . . . 8 ⊢ (𝑥 = 𝑋 → ⦋𝑥 / 𝑚⦌𝑀 = ⦋𝑋 / 𝑚⦌𝑀) | |
16 | sbceq1a 3705 | . . . . . . . 8 ⊢ (𝑥 = 𝑋 → (𝜑 ↔ [𝑋 / 𝑥]𝜑)) | |
17 | 15, 16 | rabeqbidv 3396 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → {𝑦 ∈ ⦋𝑥 / 𝑚⦌𝑀 ∣ 𝜑} = {𝑦 ∈ ⦋𝑋 / 𝑚⦌𝑀 ∣ [𝑋 / 𝑥]𝜑}) |
18 | 10, 14, 17, 4 | fvmptf 6839 | . . . . . 6 ⊢ ((𝑋 ∈ 𝑉 ∧ {𝑦 ∈ ⦋𝑋 / 𝑚⦌𝑀 ∣ [𝑋 / 𝑥]𝜑} ∈ V) → (𝐹‘𝑋) = {𝑦 ∈ ⦋𝑋 / 𝑚⦌𝑀 ∣ [𝑋 / 𝑥]𝜑}) |
19 | 6, 9, 18 | syl2anc 587 | . . . . 5 ⊢ (𝑋 ∈ dom 𝐹 → (𝐹‘𝑋) = {𝑦 ∈ ⦋𝑋 / 𝑚⦌𝑀 ∣ [𝑋 / 𝑥]𝜑}) |
20 | 19 | eleq2d 2823 | . . . 4 ⊢ (𝑋 ∈ dom 𝐹 → (𝑌 ∈ (𝐹‘𝑋) ↔ 𝑌 ∈ {𝑦 ∈ ⦋𝑋 / 𝑚⦌𝑀 ∣ [𝑋 / 𝑥]𝜑})) |
21 | elrabi 3596 | . . . . . 6 ⊢ (𝑌 ∈ {𝑦 ∈ ⦋𝑋 / 𝑚⦌𝑀 ∣ [𝑋 / 𝑥]𝜑} → 𝑌 ∈ ⦋𝑋 / 𝑚⦌𝑀) | |
22 | 6, 21 | anim12i 616 | . . . . 5 ⊢ ((𝑋 ∈ dom 𝐹 ∧ 𝑌 ∈ {𝑦 ∈ ⦋𝑋 / 𝑚⦌𝑀 ∣ [𝑋 / 𝑥]𝜑}) → (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ ⦋𝑋 / 𝑚⦌𝑀)) |
23 | 22 | ex 416 | . . . 4 ⊢ (𝑋 ∈ dom 𝐹 → (𝑌 ∈ {𝑦 ∈ ⦋𝑋 / 𝑚⦌𝑀 ∣ [𝑋 / 𝑥]𝜑} → (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ ⦋𝑋 / 𝑚⦌𝑀))) |
24 | 20, 23 | sylbid 243 | . . 3 ⊢ (𝑋 ∈ dom 𝐹 → (𝑌 ∈ (𝐹‘𝑋) → (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ ⦋𝑋 / 𝑚⦌𝑀))) |
25 | 1, 3, 24 | 3syl 18 | . 2 ⊢ (𝑌 ∈ (𝐹‘𝑋) → (𝑌 ∈ (𝐹‘𝑋) → (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ ⦋𝑋 / 𝑚⦌𝑀))) |
26 | 25 | pm2.43i 52 | 1 ⊢ (𝑌 ∈ (𝐹‘𝑋) → (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ ⦋𝑋 / 𝑚⦌𝑀)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2110 ≠ wne 2940 {crab 3065 Vcvv 3408 [wsbc 3694 ⦋csb 3811 ∅c0 4237 ↦ cmpt 5135 dom cdm 5551 ‘cfv 6380 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-13 2371 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pr 5322 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-br 5054 df-opab 5116 df-mpt 5136 df-id 5455 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-iota 6338 df-fun 6382 df-fv 6388 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |