Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfcsbd | Structured version Visualization version GIF version |
Description: Deduction version of nfcsb 3834. Usage of this theorem is discouraged because it depends on ax-13 2379. (Contributed by NM, 21-Nov-2005.) (Revised by Mario Carneiro, 12-Oct-2016.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nfcsbd.1 | ⊢ Ⅎ𝑦𝜑 |
nfcsbd.2 | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
nfcsbd.3 | ⊢ (𝜑 → Ⅎ𝑥𝐵) |
Ref | Expression |
---|---|
nfcsbd | ⊢ (𝜑 → Ⅎ𝑥⦋𝐴 / 𝑦⦌𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-csb 3808 | . 2 ⊢ ⦋𝐴 / 𝑦⦌𝐵 = {𝑧 ∣ [𝐴 / 𝑦]𝑧 ∈ 𝐵} | |
2 | nfv 1915 | . . 3 ⊢ Ⅎ𝑧𝜑 | |
3 | nfcsbd.1 | . . . 4 ⊢ Ⅎ𝑦𝜑 | |
4 | nfcsbd.2 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
5 | nfcsbd.3 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥𝐵) | |
6 | 5 | nfcrd 2908 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥 𝑧 ∈ 𝐵) |
7 | 3, 4, 6 | nfsbcd 3722 | . . 3 ⊢ (𝜑 → Ⅎ𝑥[𝐴 / 𝑦]𝑧 ∈ 𝐵) |
8 | 2, 7 | nfabd 2941 | . 2 ⊢ (𝜑 → Ⅎ𝑥{𝑧 ∣ [𝐴 / 𝑦]𝑧 ∈ 𝐵}) |
9 | 1, 8 | nfcxfrd 2918 | 1 ⊢ (𝜑 → Ⅎ𝑥⦋𝐴 / 𝑦⦌𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 Ⅎwnf 1785 ∈ wcel 2111 {cab 2735 Ⅎwnfc 2899 [wsbc 3698 ⦋csb 3807 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-13 2379 ax-ext 2729 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-tru 1541 df-ex 1782 df-nf 1786 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-sbc 3699 df-csb 3808 |
This theorem is referenced by: nfcsb 3834 |
Copyright terms: Public domain | W3C validator |