![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfcsbd | Structured version Visualization version GIF version |
Description: Deduction version of nfcsb 3936. Usage of this theorem is discouraged because it depends on ax-13 2375. (Contributed by NM, 21-Nov-2005.) (Revised by Mario Carneiro, 12-Oct-2016.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nfcsbd.1 | ⊢ Ⅎ𝑦𝜑 |
nfcsbd.2 | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
nfcsbd.3 | ⊢ (𝜑 → Ⅎ𝑥𝐵) |
Ref | Expression |
---|---|
nfcsbd | ⊢ (𝜑 → Ⅎ𝑥⦋𝐴 / 𝑦⦌𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-csb 3909 | . 2 ⊢ ⦋𝐴 / 𝑦⦌𝐵 = {𝑧 ∣ [𝐴 / 𝑦]𝑧 ∈ 𝐵} | |
2 | nfv 1912 | . . 3 ⊢ Ⅎ𝑧𝜑 | |
3 | nfcsbd.1 | . . . 4 ⊢ Ⅎ𝑦𝜑 | |
4 | nfcsbd.2 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
5 | nfcsbd.3 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥𝐵) | |
6 | 5 | nfcrd 2897 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥 𝑧 ∈ 𝐵) |
7 | 3, 4, 6 | nfsbcd 3815 | . . 3 ⊢ (𝜑 → Ⅎ𝑥[𝐴 / 𝑦]𝑧 ∈ 𝐵) |
8 | 2, 7 | nfabd 2926 | . 2 ⊢ (𝜑 → Ⅎ𝑥{𝑧 ∣ [𝐴 / 𝑦]𝑧 ∈ 𝐵}) |
9 | 1, 8 | nfcxfrd 2902 | 1 ⊢ (𝜑 → Ⅎ𝑥⦋𝐴 / 𝑦⦌𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 Ⅎwnf 1780 ∈ wcel 2106 {cab 2712 Ⅎwnfc 2888 [wsbc 3791 ⦋csb 3908 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-13 2375 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1540 df-ex 1777 df-nf 1781 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-sbc 3792 df-csb 3909 |
This theorem is referenced by: nfcsb 3936 |
Copyright terms: Public domain | W3C validator |