| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfcsbd | Structured version Visualization version GIF version | ||
| Description: Deduction version of nfcsb 3875. Usage of this theorem is discouraged because it depends on ax-13 2371. (Contributed by NM, 21-Nov-2005.) (Revised by Mario Carneiro, 12-Oct-2016.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nfcsbd.1 | ⊢ Ⅎ𝑦𝜑 |
| nfcsbd.2 | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
| nfcsbd.3 | ⊢ (𝜑 → Ⅎ𝑥𝐵) |
| Ref | Expression |
|---|---|
| nfcsbd | ⊢ (𝜑 → Ⅎ𝑥⦋𝐴 / 𝑦⦌𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-csb 3849 | . 2 ⊢ ⦋𝐴 / 𝑦⦌𝐵 = {𝑧 ∣ [𝐴 / 𝑦]𝑧 ∈ 𝐵} | |
| 2 | nfv 1915 | . . 3 ⊢ Ⅎ𝑧𝜑 | |
| 3 | nfcsbd.1 | . . . 4 ⊢ Ⅎ𝑦𝜑 | |
| 4 | nfcsbd.2 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
| 5 | nfcsbd.3 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥𝐵) | |
| 6 | 5 | nfcrd 2886 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥 𝑧 ∈ 𝐵) |
| 7 | 3, 4, 6 | nfsbcd 3763 | . . 3 ⊢ (𝜑 → Ⅎ𝑥[𝐴 / 𝑦]𝑧 ∈ 𝐵) |
| 8 | 2, 7 | nfabd 2915 | . 2 ⊢ (𝜑 → Ⅎ𝑥{𝑧 ∣ [𝐴 / 𝑦]𝑧 ∈ 𝐵}) |
| 9 | 1, 8 | nfcxfrd 2891 | 1 ⊢ (𝜑 → Ⅎ𝑥⦋𝐴 / 𝑦⦌𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 Ⅎwnf 1784 ∈ wcel 2110 {cab 2708 Ⅎwnfc 2877 [wsbc 3739 ⦋csb 3848 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-13 2371 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 df-sb 2067 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-sbc 3740 df-csb 3849 |
| This theorem is referenced by: nfcsb 3875 |
| Copyright terms: Public domain | W3C validator |