Proof of Theorem riotaeqimp
| Step | Hyp | Ref
| Expression |
| 1 | | riotaeqimp.j |
. . . . . . 7
⊢ 𝐽 = (℩𝑎 ∈ 𝑉 𝑌 = 𝐴) |
| 2 | 1 | eqcomi 2746 |
. . . . . 6
⊢
(℩𝑎
∈ 𝑉 𝑌 = 𝐴) = 𝐽 |
| 3 | 2 | eqeq2i 2750 |
. . . . 5
⊢ (𝐼 = (℩𝑎 ∈ 𝑉 𝑌 = 𝐴) ↔ 𝐼 = 𝐽) |
| 4 | 3 | a1i 11 |
. . . 4
⊢ (𝜑 → (𝐼 = (℩𝑎 ∈ 𝑉 𝑌 = 𝐴) ↔ 𝐼 = 𝐽)) |
| 5 | 4 | bicomd 223 |
. . 3
⊢ (𝜑 → (𝐼 = 𝐽 ↔ 𝐼 = (℩𝑎 ∈ 𝑉 𝑌 = 𝐴))) |
| 6 | 5 | biimpa 476 |
. 2
⊢ ((𝜑 ∧ 𝐼 = 𝐽) → 𝐼 = (℩𝑎 ∈ 𝑉 𝑌 = 𝐴)) |
| 7 | | riotaeqimp.i |
. . . . 5
⊢ 𝐼 = (℩𝑎 ∈ 𝑉 𝑋 = 𝐴) |
| 8 | 7 | eqeq1i 2742 |
. . . 4
⊢ (𝐼 = 𝐽 ↔ (℩𝑎 ∈ 𝑉 𝑋 = 𝐴) = 𝐽) |
| 9 | | riotaeqimp.y |
. . . . . . 7
⊢ (𝜑 → ∃!𝑎 ∈ 𝑉 𝑌 = 𝐴) |
| 10 | | riotacl 7405 |
. . . . . . 7
⊢
(∃!𝑎 ∈
𝑉 𝑌 = 𝐴 → (℩𝑎 ∈ 𝑉 𝑌 = 𝐴) ∈ 𝑉) |
| 11 | 9, 10 | syl 17 |
. . . . . 6
⊢ (𝜑 → (℩𝑎 ∈ 𝑉 𝑌 = 𝐴) ∈ 𝑉) |
| 12 | 1, 11 | eqeltrid 2845 |
. . . . 5
⊢ (𝜑 → 𝐽 ∈ 𝑉) |
| 13 | | riotaeqimp.x |
. . . . 5
⊢ (𝜑 → ∃!𝑎 ∈ 𝑉 𝑋 = 𝐴) |
| 14 | | nfv 1914 |
. . . . . . 7
⊢
Ⅎ𝑎 𝐽 ∈ 𝑉 |
| 15 | | nfcvd 2906 |
. . . . . . 7
⊢ (𝐽 ∈ 𝑉 → Ⅎ𝑎𝐽) |
| 16 | | nfcvd 2906 |
. . . . . . . 8
⊢ (𝐽 ∈ 𝑉 → Ⅎ𝑎𝑋) |
| 17 | 15 | nfcsb1d 3921 |
. . . . . . . 8
⊢ (𝐽 ∈ 𝑉 → Ⅎ𝑎⦋𝐽 / 𝑎⦌𝐴) |
| 18 | 16, 17 | nfeqd 2916 |
. . . . . . 7
⊢ (𝐽 ∈ 𝑉 → Ⅎ𝑎 𝑋 = ⦋𝐽 / 𝑎⦌𝐴) |
| 19 | | id 22 |
. . . . . . 7
⊢ (𝐽 ∈ 𝑉 → 𝐽 ∈ 𝑉) |
| 20 | | csbeq1a 3913 |
. . . . . . . . 9
⊢ (𝑎 = 𝐽 → 𝐴 = ⦋𝐽 / 𝑎⦌𝐴) |
| 21 | 20 | eqeq2d 2748 |
. . . . . . . 8
⊢ (𝑎 = 𝐽 → (𝑋 = 𝐴 ↔ 𝑋 = ⦋𝐽 / 𝑎⦌𝐴)) |
| 22 | 21 | adantl 481 |
. . . . . . 7
⊢ ((𝐽 ∈ 𝑉 ∧ 𝑎 = 𝐽) → (𝑋 = 𝐴 ↔ 𝑋 = ⦋𝐽 / 𝑎⦌𝐴)) |
| 23 | 14, 15, 18, 19, 22 | riota2df 7411 |
. . . . . 6
⊢ ((𝐽 ∈ 𝑉 ∧ ∃!𝑎 ∈ 𝑉 𝑋 = 𝐴) → (𝑋 = ⦋𝐽 / 𝑎⦌𝐴 ↔ (℩𝑎 ∈ 𝑉 𝑋 = 𝐴) = 𝐽)) |
| 24 | 23 | bicomd 223 |
. . . . 5
⊢ ((𝐽 ∈ 𝑉 ∧ ∃!𝑎 ∈ 𝑉 𝑋 = 𝐴) → ((℩𝑎 ∈ 𝑉 𝑋 = 𝐴) = 𝐽 ↔ 𝑋 = ⦋𝐽 / 𝑎⦌𝐴)) |
| 25 | 12, 13, 24 | syl2anc 584 |
. . . 4
⊢ (𝜑 → ((℩𝑎 ∈ 𝑉 𝑋 = 𝐴) = 𝐽 ↔ 𝑋 = ⦋𝐽 / 𝑎⦌𝐴)) |
| 26 | 8, 25 | bitrid 283 |
. . 3
⊢ (𝜑 → (𝐼 = 𝐽 ↔ 𝑋 = ⦋𝐽 / 𝑎⦌𝐴)) |
| 27 | 26 | biimpa 476 |
. 2
⊢ ((𝜑 ∧ 𝐼 = 𝐽) → 𝑋 = ⦋𝐽 / 𝑎⦌𝐴) |
| 28 | | riotacl 7405 |
. . . . . . . 8
⊢
(∃!𝑎 ∈
𝑉 𝑋 = 𝐴 → (℩𝑎 ∈ 𝑉 𝑋 = 𝐴) ∈ 𝑉) |
| 29 | 13, 28 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (℩𝑎 ∈ 𝑉 𝑋 = 𝐴) ∈ 𝑉) |
| 30 | 7, 29 | eqeltrid 2845 |
. . . . . 6
⊢ (𝜑 → 𝐼 ∈ 𝑉) |
| 31 | | nfv 1914 |
. . . . . . 7
⊢
Ⅎ𝑎 𝐼 ∈ 𝑉 |
| 32 | | nfcvd 2906 |
. . . . . . 7
⊢ (𝐼 ∈ 𝑉 → Ⅎ𝑎𝐼) |
| 33 | | nfcvd 2906 |
. . . . . . . 8
⊢ (𝐼 ∈ 𝑉 → Ⅎ𝑎𝑌) |
| 34 | 32 | nfcsb1d 3921 |
. . . . . . . 8
⊢ (𝐼 ∈ 𝑉 → Ⅎ𝑎⦋𝐼 / 𝑎⦌𝐴) |
| 35 | 33, 34 | nfeqd 2916 |
. . . . . . 7
⊢ (𝐼 ∈ 𝑉 → Ⅎ𝑎 𝑌 = ⦋𝐼 / 𝑎⦌𝐴) |
| 36 | | id 22 |
. . . . . . 7
⊢ (𝐼 ∈ 𝑉 → 𝐼 ∈ 𝑉) |
| 37 | | csbeq1a 3913 |
. . . . . . . . 9
⊢ (𝑎 = 𝐼 → 𝐴 = ⦋𝐼 / 𝑎⦌𝐴) |
| 38 | 37 | eqeq2d 2748 |
. . . . . . . 8
⊢ (𝑎 = 𝐼 → (𝑌 = 𝐴 ↔ 𝑌 = ⦋𝐼 / 𝑎⦌𝐴)) |
| 39 | 38 | adantl 481 |
. . . . . . 7
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑎 = 𝐼) → (𝑌 = 𝐴 ↔ 𝑌 = ⦋𝐼 / 𝑎⦌𝐴)) |
| 40 | 31, 32, 35, 36, 39 | riota2df 7411 |
. . . . . 6
⊢ ((𝐼 ∈ 𝑉 ∧ ∃!𝑎 ∈ 𝑉 𝑌 = 𝐴) → (𝑌 = ⦋𝐼 / 𝑎⦌𝐴 ↔ (℩𝑎 ∈ 𝑉 𝑌 = 𝐴) = 𝐼)) |
| 41 | 30, 9, 40 | syl2anc 584 |
. . . . 5
⊢ (𝜑 → (𝑌 = ⦋𝐼 / 𝑎⦌𝐴 ↔ (℩𝑎 ∈ 𝑉 𝑌 = 𝐴) = 𝐼)) |
| 42 | | eqcom 2744 |
. . . . 5
⊢
((℩𝑎
∈ 𝑉 𝑌 = 𝐴) = 𝐼 ↔ 𝐼 = (℩𝑎 ∈ 𝑉 𝑌 = 𝐴)) |
| 43 | 41, 42 | bitrdi 287 |
. . . 4
⊢ (𝜑 → (𝑌 = ⦋𝐼 / 𝑎⦌𝐴 ↔ 𝐼 = (℩𝑎 ∈ 𝑉 𝑌 = 𝐴))) |
| 44 | 43 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ 𝐼 = 𝐽) → (𝑌 = ⦋𝐼 / 𝑎⦌𝐴 ↔ 𝐼 = (℩𝑎 ∈ 𝑉 𝑌 = 𝐴))) |
| 45 | | csbeq1 3902 |
. . . . . . 7
⊢ (𝐽 = 𝐼 → ⦋𝐽 / 𝑎⦌𝐴 = ⦋𝐼 / 𝑎⦌𝐴) |
| 46 | 45 | eqcoms 2745 |
. . . . . 6
⊢ (𝐼 = 𝐽 → ⦋𝐽 / 𝑎⦌𝐴 = ⦋𝐼 / 𝑎⦌𝐴) |
| 47 | | eqeq12 2754 |
. . . . . . 7
⊢ ((𝑋 = ⦋𝐽 / 𝑎⦌𝐴 ∧ 𝑌 = ⦋𝐼 / 𝑎⦌𝐴) → (𝑋 = 𝑌 ↔ ⦋𝐽 / 𝑎⦌𝐴 = ⦋𝐼 / 𝑎⦌𝐴)) |
| 48 | 47 | ancoms 458 |
. . . . . 6
⊢ ((𝑌 = ⦋𝐼 / 𝑎⦌𝐴 ∧ 𝑋 = ⦋𝐽 / 𝑎⦌𝐴) → (𝑋 = 𝑌 ↔ ⦋𝐽 / 𝑎⦌𝐴 = ⦋𝐼 / 𝑎⦌𝐴)) |
| 49 | 46, 48 | syl5ibrcom 247 |
. . . . 5
⊢ (𝐼 = 𝐽 → ((𝑌 = ⦋𝐼 / 𝑎⦌𝐴 ∧ 𝑋 = ⦋𝐽 / 𝑎⦌𝐴) → 𝑋 = 𝑌)) |
| 50 | 49 | expd 415 |
. . . 4
⊢ (𝐼 = 𝐽 → (𝑌 = ⦋𝐼 / 𝑎⦌𝐴 → (𝑋 = ⦋𝐽 / 𝑎⦌𝐴 → 𝑋 = 𝑌))) |
| 51 | 50 | adantl 481 |
. . 3
⊢ ((𝜑 ∧ 𝐼 = 𝐽) → (𝑌 = ⦋𝐼 / 𝑎⦌𝐴 → (𝑋 = ⦋𝐽 / 𝑎⦌𝐴 → 𝑋 = 𝑌))) |
| 52 | 44, 51 | sylbird 260 |
. 2
⊢ ((𝜑 ∧ 𝐼 = 𝐽) → (𝐼 = (℩𝑎 ∈ 𝑉 𝑌 = 𝐴) → (𝑋 = ⦋𝐽 / 𝑎⦌𝐴 → 𝑋 = 𝑌))) |
| 53 | 6, 27, 52 | mp2d 49 |
1
⊢ ((𝜑 ∧ 𝐼 = 𝐽) → 𝑋 = 𝑌) |