| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfcsb1 | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for substitution into a class. (Contributed by Mario Carneiro, 12-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfcsb1.1 | ⊢ Ⅎ𝑥𝐴 |
| Ref | Expression |
|---|---|
| nfcsb1 | ⊢ Ⅎ𝑥⦋𝐴 / 𝑥⦌𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcsb1.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐴) |
| 3 | 2 | nfcsb1d 3896 | . 2 ⊢ (⊤ → Ⅎ𝑥⦋𝐴 / 𝑥⦌𝐵) |
| 4 | 3 | mptru 1547 | 1 ⊢ Ⅎ𝑥⦋𝐴 / 𝑥⦌𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: ⊤wtru 1541 Ⅎwnfc 2883 ⦋csb 3874 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-sbc 3766 df-csb 3875 |
| This theorem is referenced by: nfcsb1v 3898 fsumsplit1 15761 iundisj 25501 disjabrex 32563 disjabrexf 32564 iundisjf 32570 iundisjfi 32773 rdgssun 37396 evl1gprodd 42130 disjinfi 45216 fsumsermpt 45608 climsubmpt 45689 climeldmeqmpt 45697 climfveqmpt 45700 climfveqmpt3 45711 climeldmeqmpt3 45718 climinf2mpt 45743 climinfmpt 45744 dvmptmulf 45966 dvnmptdivc 45967 sge0lempt 46439 sge0isummpt2 46461 meadjiun 46495 hoimbl2 46694 vonhoire 46701 |
| Copyright terms: Public domain | W3C validator |