Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfcsb1 | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for substitution into a class. (Contributed by Mario Carneiro, 12-Oct-2016.) |
Ref | Expression |
---|---|
nfcsb1.1 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
nfcsb1 | ⊢ Ⅎ𝑥⦋𝐴 / 𝑥⦌𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcsb1.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐴) |
3 | 2 | nfcsb1d 3851 | . 2 ⊢ (⊤ → Ⅎ𝑥⦋𝐴 / 𝑥⦌𝐵) |
4 | 3 | mptru 1546 | 1 ⊢ Ⅎ𝑥⦋𝐴 / 𝑥⦌𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ⊤wtru 1540 Ⅎwnfc 2886 ⦋csb 3828 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-sbc 3712 df-csb 3829 |
This theorem is referenced by: nfcsb1v 3853 fsumsplit1 15385 iundisj 24617 disjabrex 30822 disjabrexf 30823 iundisjf 30829 iundisjfi 31019 rdgssun 35476 disjinfi 42620 fsumsermpt 43010 climsubmpt 43091 climeldmeqmpt 43099 climfveqmpt 43102 climfveqmpt3 43113 climeldmeqmpt3 43120 climinf2mpt 43145 climinfmpt 43146 dvmptmulf 43368 dvnmptdivc 43369 sge0f1o 43810 sge0lempt 43838 sge0isummpt2 43860 meadjiun 43894 hoimbl2 44093 vonhoire 44100 |
Copyright terms: Public domain | W3C validator |