| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfcsb1 | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for substitution into a class. (Contributed by Mario Carneiro, 12-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfcsb1.1 | ⊢ Ⅎ𝑥𝐴 |
| Ref | Expression |
|---|---|
| nfcsb1 | ⊢ Ⅎ𝑥⦋𝐴 / 𝑥⦌𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcsb1.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐴) |
| 3 | 2 | nfcsb1d 3869 | . 2 ⊢ (⊤ → Ⅎ𝑥⦋𝐴 / 𝑥⦌𝐵) |
| 4 | 3 | mptru 1548 | 1 ⊢ Ⅎ𝑥⦋𝐴 / 𝑥⦌𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: ⊤wtru 1542 Ⅎwnfc 2881 ⦋csb 3847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-sbc 3739 df-csb 3848 |
| This theorem is referenced by: nfcsb1v 3871 fsumsplit1 15662 iundisj 25486 disjabrex 32573 disjabrexf 32574 iundisjf 32580 iundisjfi 32789 rdgssun 37433 evl1gprodd 42220 disjinfi 45303 fsumsermpt 45693 climsubmpt 45772 climeldmeqmpt 45780 climfveqmpt 45783 climfveqmpt3 45794 climeldmeqmpt3 45801 climinf2mpt 45826 climinfmpt 45827 dvmptmulf 46049 dvnmptdivc 46050 sge0lempt 46522 sge0isummpt2 46544 meadjiun 46578 hoimbl2 46777 vonhoire 46784 |
| Copyright terms: Public domain | W3C validator |