| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfcsb1 | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for substitution into a class. (Contributed by Mario Carneiro, 12-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfcsb1.1 | ⊢ Ⅎ𝑥𝐴 |
| Ref | Expression |
|---|---|
| nfcsb1 | ⊢ Ⅎ𝑥⦋𝐴 / 𝑥⦌𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcsb1.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐴) |
| 3 | 2 | nfcsb1d 3887 | . 2 ⊢ (⊤ → Ⅎ𝑥⦋𝐴 / 𝑥⦌𝐵) |
| 4 | 3 | mptru 1547 | 1 ⊢ Ⅎ𝑥⦋𝐴 / 𝑥⦌𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: ⊤wtru 1541 Ⅎwnfc 2877 ⦋csb 3865 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-sbc 3757 df-csb 3866 |
| This theorem is referenced by: nfcsb1v 3889 fsumsplit1 15718 iundisj 25456 disjabrex 32518 disjabrexf 32519 iundisjf 32525 iundisjfi 32726 rdgssun 37373 evl1gprodd 42112 disjinfi 45193 fsumsermpt 45584 climsubmpt 45665 climeldmeqmpt 45673 climfveqmpt 45676 climfveqmpt3 45687 climeldmeqmpt3 45694 climinf2mpt 45719 climinfmpt 45720 dvmptmulf 45942 dvnmptdivc 45943 sge0lempt 46415 sge0isummpt2 46437 meadjiun 46471 hoimbl2 46670 vonhoire 46677 |
| Copyright terms: Public domain | W3C validator |