Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfcsb1 | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for substitution into a class. (Contributed by Mario Carneiro, 12-Oct-2016.) |
Ref | Expression |
---|---|
nfcsb1.1 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
nfcsb1 | ⊢ Ⅎ𝑥⦋𝐴 / 𝑥⦌𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcsb1.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐴) |
3 | 2 | nfcsb1d 3855 | . 2 ⊢ (⊤ → Ⅎ𝑥⦋𝐴 / 𝑥⦌𝐵) |
4 | 3 | mptru 1546 | 1 ⊢ Ⅎ𝑥⦋𝐴 / 𝑥⦌𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ⊤wtru 1540 Ⅎwnfc 2887 ⦋csb 3832 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-sbc 3717 df-csb 3833 |
This theorem is referenced by: nfcsb1v 3857 fsumsplit1 15457 iundisj 24712 disjabrex 30921 disjabrexf 30922 iundisjf 30928 iundisjfi 31117 rdgssun 35549 disjinfi 42731 fsumsermpt 43120 climsubmpt 43201 climeldmeqmpt 43209 climfveqmpt 43212 climfveqmpt3 43223 climeldmeqmpt3 43230 climinf2mpt 43255 climinfmpt 43256 dvmptmulf 43478 dvnmptdivc 43479 sge0f1o 43920 sge0lempt 43948 sge0isummpt2 43970 meadjiun 44004 hoimbl2 44203 vonhoire 44210 |
Copyright terms: Public domain | W3C validator |