![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfcsb1 | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for substitution into a class. (Contributed by Mario Carneiro, 12-Oct-2016.) |
Ref | Expression |
---|---|
nfcsb1.1 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
nfcsb1 | ⊢ Ⅎ𝑥⦋𝐴 / 𝑥⦌𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcsb1.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐴) |
3 | 2 | nfcsb1d 3944 | . 2 ⊢ (⊤ → Ⅎ𝑥⦋𝐴 / 𝑥⦌𝐵) |
4 | 3 | mptru 1544 | 1 ⊢ Ⅎ𝑥⦋𝐴 / 𝑥⦌𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ⊤wtru 1538 Ⅎwnfc 2893 ⦋csb 3921 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-sbc 3805 df-csb 3922 |
This theorem is referenced by: nfcsb1v 3946 fsumsplit1 15793 iundisj 25602 disjabrex 32604 disjabrexf 32605 iundisjf 32611 iundisjfi 32801 rdgssun 37344 evl1gprodd 42074 disjinfi 45099 fsumsermpt 45500 climsubmpt 45581 climeldmeqmpt 45589 climfveqmpt 45592 climfveqmpt3 45603 climeldmeqmpt3 45610 climinf2mpt 45635 climinfmpt 45636 dvmptmulf 45858 dvnmptdivc 45859 sge0f1o 46303 sge0lempt 46331 sge0isummpt2 46353 meadjiun 46387 hoimbl2 46586 vonhoire 46593 |
Copyright terms: Public domain | W3C validator |