| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfcsb1 | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for substitution into a class. (Contributed by Mario Carneiro, 12-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfcsb1.1 | ⊢ Ⅎ𝑥𝐴 |
| Ref | Expression |
|---|---|
| nfcsb1 | ⊢ Ⅎ𝑥⦋𝐴 / 𝑥⦌𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcsb1.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐴) |
| 3 | 2 | nfcsb1d 3881 | . 2 ⊢ (⊤ → Ⅎ𝑥⦋𝐴 / 𝑥⦌𝐵) |
| 4 | 3 | mptru 1547 | 1 ⊢ Ⅎ𝑥⦋𝐴 / 𝑥⦌𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: ⊤wtru 1541 Ⅎwnfc 2876 ⦋csb 3859 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-sbc 3751 df-csb 3860 |
| This theorem is referenced by: nfcsb1v 3883 fsumsplit1 15687 iundisj 25482 disjabrex 32561 disjabrexf 32562 iundisjf 32568 iundisjfi 32769 rdgssun 37359 evl1gprodd 42098 disjinfi 45179 fsumsermpt 45570 climsubmpt 45651 climeldmeqmpt 45659 climfveqmpt 45662 climfveqmpt3 45673 climeldmeqmpt3 45680 climinf2mpt 45705 climinfmpt 45706 dvmptmulf 45928 dvnmptdivc 45929 sge0lempt 46401 sge0isummpt2 46423 meadjiun 46457 hoimbl2 46656 vonhoire 46663 |
| Copyright terms: Public domain | W3C validator |