MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfsbcd Structured version   Visualization version   GIF version

Theorem nfsbcd 3828
Description: Deduction version of nfsbc 3829. Usage of this theorem is discouraged because it depends on ax-13 2380. Use the weaker nfsbcdw 3825 when possible. (Contributed by NM, 23-Nov-2005.) (Revised by Mario Carneiro, 12-Oct-2016.) (New usage is discouraged.)
Hypotheses
Ref Expression
nfsbcd.1 𝑦𝜑
nfsbcd.2 (𝜑𝑥𝐴)
nfsbcd.3 (𝜑 → Ⅎ𝑥𝜓)
Assertion
Ref Expression
nfsbcd (𝜑 → Ⅎ𝑥[𝐴 / 𝑦]𝜓)

Proof of Theorem nfsbcd
StepHypRef Expression
1 df-sbc 3805 . 2 ([𝐴 / 𝑦]𝜓𝐴 ∈ {𝑦𝜓})
2 nfsbcd.2 . . 3 (𝜑𝑥𝐴)
3 nfsbcd.1 . . . 4 𝑦𝜑
4 nfsbcd.3 . . . 4 (𝜑 → Ⅎ𝑥𝜓)
53, 4nfabd 2934 . . 3 (𝜑𝑥{𝑦𝜓})
62, 5nfeld 2920 . 2 (𝜑 → Ⅎ𝑥 𝐴 ∈ {𝑦𝜓})
71, 6nfxfrd 1852 1 (𝜑 → Ⅎ𝑥[𝐴 / 𝑦]𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wnf 1781  wcel 2108  {cab 2717  wnfc 2893  [wsbc 3804
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-13 2380  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-sbc 3805
This theorem is referenced by:  nfsbc  3829  nfcsbd  3947  sbcnestgf  4449
  Copyright terms: Public domain W3C validator