|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > nfsbcd | Structured version Visualization version GIF version | ||
| Description: Deduction version of nfsbc 3813. Usage of this theorem is discouraged because it depends on ax-13 2377. Use the weaker nfsbcdw 3809 when possible. (Contributed by NM, 23-Nov-2005.) (Revised by Mario Carneiro, 12-Oct-2016.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| nfsbcd.1 | ⊢ Ⅎ𝑦𝜑 | 
| nfsbcd.2 | ⊢ (𝜑 → Ⅎ𝑥𝐴) | 
| nfsbcd.3 | ⊢ (𝜑 → Ⅎ𝑥𝜓) | 
| Ref | Expression | 
|---|---|
| nfsbcd | ⊢ (𝜑 → Ⅎ𝑥[𝐴 / 𝑦]𝜓) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-sbc 3789 | . 2 ⊢ ([𝐴 / 𝑦]𝜓 ↔ 𝐴 ∈ {𝑦 ∣ 𝜓}) | |
| 2 | nfsbcd.2 | . . 3 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
| 3 | nfsbcd.1 | . . . 4 ⊢ Ⅎ𝑦𝜑 | |
| 4 | nfsbcd.3 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
| 5 | 3, 4 | nfabd 2928 | . . 3 ⊢ (𝜑 → Ⅎ𝑥{𝑦 ∣ 𝜓}) | 
| 6 | 2, 5 | nfeld 2917 | . 2 ⊢ (𝜑 → Ⅎ𝑥 𝐴 ∈ {𝑦 ∣ 𝜓}) | 
| 7 | 1, 6 | nfxfrd 1854 | 1 ⊢ (𝜑 → Ⅎ𝑥[𝐴 / 𝑦]𝜓) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 Ⅎwnf 1783 ∈ wcel 2108 {cab 2714 Ⅎwnfc 2890 [wsbc 3788 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-13 2377 ax-ext 2708 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-sbc 3789 | 
| This theorem is referenced by: nfsbc 3813 nfcsbd 3924 sbcnestgf 4426 | 
| Copyright terms: Public domain | W3C validator |