MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfsbcd Structured version   Visualization version   GIF version

Theorem nfsbcd 3802
Description: Deduction version of nfsbc 3803. Usage of this theorem is discouraged because it depends on ax-13 2366. Use the weaker nfsbcdw 3799 when possible. (Contributed by NM, 23-Nov-2005.) (Revised by Mario Carneiro, 12-Oct-2016.) (New usage is discouraged.)
Hypotheses
Ref Expression
nfsbcd.1 𝑦𝜑
nfsbcd.2 (𝜑𝑥𝐴)
nfsbcd.3 (𝜑 → Ⅎ𝑥𝜓)
Assertion
Ref Expression
nfsbcd (𝜑 → Ⅎ𝑥[𝐴 / 𝑦]𝜓)

Proof of Theorem nfsbcd
StepHypRef Expression
1 df-sbc 3779 . 2 ([𝐴 / 𝑦]𝜓𝐴 ∈ {𝑦𝜓})
2 nfsbcd.2 . . 3 (𝜑𝑥𝐴)
3 nfsbcd.1 . . . 4 𝑦𝜑
4 nfsbcd.3 . . . 4 (𝜑 → Ⅎ𝑥𝜓)
53, 4nfabd 2925 . . 3 (𝜑𝑥{𝑦𝜓})
62, 5nfeld 2911 . 2 (𝜑 → Ⅎ𝑥 𝐴 ∈ {𝑦𝜓})
71, 6nfxfrd 1848 1 (𝜑 → Ⅎ𝑥[𝐴 / 𝑦]𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wnf 1777  wcel 2098  {cab 2705  wnfc 2879  [wsbc 3778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-13 2366  ax-ext 2699
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-tru 1536  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-sbc 3779
This theorem is referenced by:  nfsbc  3803  nfcsbd  3920  sbcnestgf  4427
  Copyright terms: Public domain W3C validator