![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfsbcd | Structured version Visualization version GIF version |
Description: Deduction version of nfsbc 3803. Usage of this theorem is discouraged because it depends on ax-13 2366. Use the weaker nfsbcdw 3799 when possible. (Contributed by NM, 23-Nov-2005.) (Revised by Mario Carneiro, 12-Oct-2016.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nfsbcd.1 | ⊢ Ⅎ𝑦𝜑 |
nfsbcd.2 | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
nfsbcd.3 | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
Ref | Expression |
---|---|
nfsbcd | ⊢ (𝜑 → Ⅎ𝑥[𝐴 / 𝑦]𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-sbc 3779 | . 2 ⊢ ([𝐴 / 𝑦]𝜓 ↔ 𝐴 ∈ {𝑦 ∣ 𝜓}) | |
2 | nfsbcd.2 | . . 3 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
3 | nfsbcd.1 | . . . 4 ⊢ Ⅎ𝑦𝜑 | |
4 | nfsbcd.3 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
5 | 3, 4 | nfabd 2925 | . . 3 ⊢ (𝜑 → Ⅎ𝑥{𝑦 ∣ 𝜓}) |
6 | 2, 5 | nfeld 2911 | . 2 ⊢ (𝜑 → Ⅎ𝑥 𝐴 ∈ {𝑦 ∣ 𝜓}) |
7 | 1, 6 | nfxfrd 1848 | 1 ⊢ (𝜑 → Ⅎ𝑥[𝐴 / 𝑦]𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 Ⅎwnf 1777 ∈ wcel 2098 {cab 2705 Ⅎwnfc 2879 [wsbc 3778 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-13 2366 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-tru 1536 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-sbc 3779 |
This theorem is referenced by: nfsbc 3803 nfcsbd 3920 sbcnestgf 4427 |
Copyright terms: Public domain | W3C validator |