![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfsbcd | Structured version Visualization version GIF version |
Description: Deduction version of nfsbc 3829. Usage of this theorem is discouraged because it depends on ax-13 2380. Use the weaker nfsbcdw 3825 when possible. (Contributed by NM, 23-Nov-2005.) (Revised by Mario Carneiro, 12-Oct-2016.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nfsbcd.1 | ⊢ Ⅎ𝑦𝜑 |
nfsbcd.2 | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
nfsbcd.3 | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
Ref | Expression |
---|---|
nfsbcd | ⊢ (𝜑 → Ⅎ𝑥[𝐴 / 𝑦]𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-sbc 3805 | . 2 ⊢ ([𝐴 / 𝑦]𝜓 ↔ 𝐴 ∈ {𝑦 ∣ 𝜓}) | |
2 | nfsbcd.2 | . . 3 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
3 | nfsbcd.1 | . . . 4 ⊢ Ⅎ𝑦𝜑 | |
4 | nfsbcd.3 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
5 | 3, 4 | nfabd 2934 | . . 3 ⊢ (𝜑 → Ⅎ𝑥{𝑦 ∣ 𝜓}) |
6 | 2, 5 | nfeld 2920 | . 2 ⊢ (𝜑 → Ⅎ𝑥 𝐴 ∈ {𝑦 ∣ 𝜓}) |
7 | 1, 6 | nfxfrd 1852 | 1 ⊢ (𝜑 → Ⅎ𝑥[𝐴 / 𝑦]𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 Ⅎwnf 1781 ∈ wcel 2108 {cab 2717 Ⅎwnfc 2893 [wsbc 3804 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-13 2380 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-sbc 3805 |
This theorem is referenced by: nfsbc 3829 nfcsbd 3947 sbcnestgf 4449 |
Copyright terms: Public domain | W3C validator |