MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfrmowOLD Structured version   Visualization version   GIF version

Theorem nfrmowOLD 3410
Description: Obsolete version of nfrmow 3397 as of 21-Nov-2024. (Contributed by NM, 16-Jun-2017.) (Revised by GG, 10-Jan-2024.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
nfreuwOLD.1 𝑥𝐴
nfreuwOLD.2 𝑥𝜑
Assertion
Ref Expression
nfrmowOLD 𝑥∃*𝑦𝐴 𝜑
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥,𝑦)

Proof of Theorem nfrmowOLD
StepHypRef Expression
1 df-rmo 3364 . 2 (∃*𝑦𝐴 𝜑 ↔ ∃*𝑦(𝑦𝐴𝜑))
2 nftru 1799 . . . 4 𝑦
3 nfcvd 2893 . . . . . 6 (⊤ → 𝑥𝑦)
4 nfreuwOLD.1 . . . . . . 7 𝑥𝐴
54a1i 11 . . . . . 6 (⊤ → 𝑥𝐴)
63, 5nfeld 2904 . . . . 5 (⊤ → Ⅎ𝑥 𝑦𝐴)
7 nfreuwOLD.2 . . . . . 6 𝑥𝜑
87a1i 11 . . . . 5 (⊤ → Ⅎ𝑥𝜑)
96, 8nfand 1893 . . . 4 (⊤ → Ⅎ𝑥(𝑦𝐴𝜑))
102, 9nfmodv 2548 . . 3 (⊤ → Ⅎ𝑥∃*𝑦(𝑦𝐴𝜑))
1110mptru 1541 . 2 𝑥∃*𝑦(𝑦𝐴𝜑)
121, 11nfxfr 1848 1 𝑥∃*𝑦𝐴 𝜑
Colors of variables: wff setvar class
Syntax hints:  wa 394  wtru 1535  wnf 1778  wcel 2099  ∃*wmo 2527  wnfc 2876  ∃*wrmo 3363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-tru 1537  df-ex 1775  df-nf 1779  df-mo 2529  df-cleq 2718  df-clel 2803  df-nfc 2878  df-rmo 3364
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator