![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfrmowOLD | Structured version Visualization version GIF version |
Description: Obsolete version of nfrmow 3397 as of 21-Nov-2024. (Contributed by NM, 16-Jun-2017.) (Revised by GG, 10-Jan-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nfreuwOLD.1 | ⊢ Ⅎ𝑥𝐴 |
nfreuwOLD.2 | ⊢ Ⅎ𝑥𝜑 |
Ref | Expression |
---|---|
nfrmowOLD | ⊢ Ⅎ𝑥∃*𝑦 ∈ 𝐴 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rmo 3364 | . 2 ⊢ (∃*𝑦 ∈ 𝐴 𝜑 ↔ ∃*𝑦(𝑦 ∈ 𝐴 ∧ 𝜑)) | |
2 | nftru 1799 | . . . 4 ⊢ Ⅎ𝑦⊤ | |
3 | nfcvd 2893 | . . . . . 6 ⊢ (⊤ → Ⅎ𝑥𝑦) | |
4 | nfreuwOLD.1 | . . . . . . 7 ⊢ Ⅎ𝑥𝐴 | |
5 | 4 | a1i 11 | . . . . . 6 ⊢ (⊤ → Ⅎ𝑥𝐴) |
6 | 3, 5 | nfeld 2904 | . . . . 5 ⊢ (⊤ → Ⅎ𝑥 𝑦 ∈ 𝐴) |
7 | nfreuwOLD.2 | . . . . . 6 ⊢ Ⅎ𝑥𝜑 | |
8 | 7 | a1i 11 | . . . . 5 ⊢ (⊤ → Ⅎ𝑥𝜑) |
9 | 6, 8 | nfand 1893 | . . . 4 ⊢ (⊤ → Ⅎ𝑥(𝑦 ∈ 𝐴 ∧ 𝜑)) |
10 | 2, 9 | nfmodv 2548 | . . 3 ⊢ (⊤ → Ⅎ𝑥∃*𝑦(𝑦 ∈ 𝐴 ∧ 𝜑)) |
11 | 10 | mptru 1541 | . 2 ⊢ Ⅎ𝑥∃*𝑦(𝑦 ∈ 𝐴 ∧ 𝜑) |
12 | 1, 11 | nfxfr 1848 | 1 ⊢ Ⅎ𝑥∃*𝑦 ∈ 𝐴 𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 394 ⊤wtru 1535 Ⅎwnf 1778 ∈ wcel 2099 ∃*wmo 2527 Ⅎwnfc 2876 ∃*wrmo 3363 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-tru 1537 df-ex 1775 df-nf 1779 df-mo 2529 df-cleq 2718 df-clel 2803 df-nfc 2878 df-rmo 3364 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |