![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfoprab1 | Structured version Visualization version GIF version |
Description: The abstraction variables in an operation class abstraction are not free. (Contributed by NM, 25-Apr-1995.) (Revised by David Abernethy, 19-Jun-2012.) |
Ref | Expression |
---|---|
nfoprab1 | ⊢ Ⅎ𝑥{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-oprab 7416 | . 2 ⊢ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {𝑤 ∣ ∃𝑥∃𝑦∃𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)} | |
2 | nfe1 2146 | . . 3 ⊢ Ⅎ𝑥∃𝑥∃𝑦∃𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) | |
3 | 2 | nfab 2908 | . 2 ⊢ Ⅎ𝑥{𝑤 ∣ ∃𝑥∃𝑦∃𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)} |
4 | 1, 3 | nfcxfr 2900 | 1 ⊢ Ⅎ𝑥{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1540 ∃wex 1780 {cab 2708 Ⅎwnfc 2882 ⟨cop 4634 {coprab 7413 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1781 df-nf 1785 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-oprab 7416 |
This theorem is referenced by: ssoprab2b 7481 eqoprab2bw 7482 nfmpo1 7492 ov3 7574 tposoprab 8251 |
Copyright terms: Public domain | W3C validator |