Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfoprab1 | Structured version Visualization version GIF version |
Description: The abstraction variables in an operation class abstraction are not free. (Contributed by NM, 25-Apr-1995.) (Revised by David Abernethy, 19-Jun-2012.) |
Ref | Expression |
---|---|
nfoprab1 | ⊢ Ⅎ𝑥{〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-oprab 7275 | . 2 ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = {𝑤 ∣ ∃𝑥∃𝑦∃𝑧(𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑)} | |
2 | nfe1 2151 | . . 3 ⊢ Ⅎ𝑥∃𝑥∃𝑦∃𝑧(𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑) | |
3 | 2 | nfab 2915 | . 2 ⊢ Ⅎ𝑥{𝑤 ∣ ∃𝑥∃𝑦∃𝑧(𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑)} |
4 | 1, 3 | nfcxfr 2907 | 1 ⊢ Ⅎ𝑥{〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 = wceq 1542 ∃wex 1786 {cab 2717 Ⅎwnfc 2889 〈cop 4573 {coprab 7272 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1787 df-nf 1791 df-sb 2072 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-oprab 7275 |
This theorem is referenced by: ssoprab2b 7338 eqoprab2bw 7339 nfmpo1 7349 ov3 7429 tposoprab 8069 |
Copyright terms: Public domain | W3C validator |