MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfoprab1 Structured version   Visualization version   GIF version

Theorem nfoprab1 7486
Description: The abstraction variables in an operation class abstraction are not free. (Contributed by NM, 25-Apr-1995.) (Revised by David Abernethy, 19-Jun-2012.)
Assertion
Ref Expression
nfoprab1 𝑥{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}

Proof of Theorem nfoprab1
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 df-oprab 7428 . 2 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {𝑤 ∣ ∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)}
2 nfe1 2140 . . 3 𝑥𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)
32nfab 2898 . 2 𝑥{𝑤 ∣ ∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)}
41, 3nfcxfr 2890 1 𝑥{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}
Colors of variables: wff setvar class
Syntax hints:  wa 394   = wceq 1534  wex 1774  {cab 2703  wnfc 2876  cop 4639  {coprab 7425
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697
This theorem depends on definitions:  df-bi 206  df-an 395  df-ex 1775  df-nf 1779  df-sb 2061  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-oprab 7428
This theorem is referenced by:  ssoprab2b  7494  eqoprab2bw  7495  nfmpo1  7505  ov3  7589  tposoprab  8277
  Copyright terms: Public domain W3C validator