MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oprabv Structured version   Visualization version   GIF version

Theorem oprabv 7208
Description: If a pair and a class are in a relationship given by a class abstraction of a collection of nested ordered pairs, the involved classes are sets. (Contributed by Alexander van der Vekens, 8-Jul-2018.)
Assertion
Ref Expression
oprabv (⟨𝑋, 𝑌⟩{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}𝑍 → (𝑋 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ V))
Distinct variable groups:   𝑥,𝑋,𝑦,𝑧   𝑥,𝑌,𝑦,𝑧   𝑥,𝑍,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Proof of Theorem oprabv
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 reloprab 7207 . . 3 Rel {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}
21brrelex12i 5601 . 2 (⟨𝑋, 𝑌⟩{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}𝑍 → (⟨𝑋, 𝑌⟩ ∈ V ∧ 𝑍 ∈ V))
3 df-br 5059 . . . . 5 (⟨𝑋, 𝑌⟩{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}𝑍 ↔ ⟨⟨𝑋, 𝑌⟩, 𝑍⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑})
4 opex 5348 . . . . . . . . 9 𝑋, 𝑌⟩ ∈ V
5 nfcv 2977 . . . . . . . . . . . . . 14 𝑤𝑋, 𝑌
65nfeq1 2993 . . . . . . . . . . . . 13 𝑤𝑋, 𝑌⟩ = ⟨𝑥, 𝑦
7 nfv 1911 . . . . . . . . . . . . 13 𝑤𝜑
86, 7nfan 1896 . . . . . . . . . . . 12 𝑤(⟨𝑋, 𝑌⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑)
98nfex 2339 . . . . . . . . . . 11 𝑤𝑦(⟨𝑋, 𝑌⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑)
109nfex 2339 . . . . . . . . . 10 𝑤𝑥𝑦(⟨𝑋, 𝑌⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑)
11 nfcv 2977 . . . . . . . . . . . . . 14 𝑧𝑋, 𝑌
1211nfeq1 2993 . . . . . . . . . . . . 13 𝑧𝑋, 𝑌⟩ = ⟨𝑥, 𝑦
13 nfsbc1v 3791 . . . . . . . . . . . . 13 𝑧[𝑍 / 𝑧]𝜑
1412, 13nfan 1896 . . . . . . . . . . . 12 𝑧(⟨𝑋, 𝑌⟩ = ⟨𝑥, 𝑦⟩ ∧ [𝑍 / 𝑧]𝜑)
1514nfex 2339 . . . . . . . . . . 11 𝑧𝑦(⟨𝑋, 𝑌⟩ = ⟨𝑥, 𝑦⟩ ∧ [𝑍 / 𝑧]𝜑)
1615nfex 2339 . . . . . . . . . 10 𝑧𝑥𝑦(⟨𝑋, 𝑌⟩ = ⟨𝑥, 𝑦⟩ ∧ [𝑍 / 𝑧]𝜑)
17 eqeq1 2825 . . . . . . . . . . . 12 (𝑤 = ⟨𝑋, 𝑌⟩ → (𝑤 = ⟨𝑥, 𝑦⟩ ↔ ⟨𝑋, 𝑌⟩ = ⟨𝑥, 𝑦⟩))
1817anbi1d 631 . . . . . . . . . . 11 (𝑤 = ⟨𝑋, 𝑌⟩ → ((𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ (⟨𝑋, 𝑌⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑)))
19182exbidv 1921 . . . . . . . . . 10 (𝑤 = ⟨𝑋, 𝑌⟩ → (∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑥𝑦(⟨𝑋, 𝑌⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑)))
20 sbceq1a 3782 . . . . . . . . . . . 12 (𝑧 = 𝑍 → (𝜑[𝑍 / 𝑧]𝜑))
2120anbi2d 630 . . . . . . . . . . 11 (𝑧 = 𝑍 → ((⟨𝑋, 𝑌⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ (⟨𝑋, 𝑌⟩ = ⟨𝑥, 𝑦⟩ ∧ [𝑍 / 𝑧]𝜑)))
22212exbidv 1921 . . . . . . . . . 10 (𝑧 = 𝑍 → (∃𝑥𝑦(⟨𝑋, 𝑌⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑥𝑦(⟨𝑋, 𝑌⟩ = ⟨𝑥, 𝑦⟩ ∧ [𝑍 / 𝑧]𝜑)))
2310, 16, 19, 22opelopabgf 5419 . . . . . . . . 9 ((⟨𝑋, 𝑌⟩ ∈ V ∧ 𝑍 ∈ V) → (⟨⟨𝑋, 𝑌⟩, 𝑍⟩ ∈ {⟨𝑤, 𝑧⟩ ∣ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)} ↔ ∃𝑥𝑦(⟨𝑋, 𝑌⟩ = ⟨𝑥, 𝑦⟩ ∧ [𝑍 / 𝑧]𝜑)))
244, 23mpan 688 . . . . . . . 8 (𝑍 ∈ V → (⟨⟨𝑋, 𝑌⟩, 𝑍⟩ ∈ {⟨𝑤, 𝑧⟩ ∣ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)} ↔ ∃𝑥𝑦(⟨𝑋, 𝑌⟩ = ⟨𝑥, 𝑦⟩ ∧ [𝑍 / 𝑧]𝜑)))
25 eqcom 2828 . . . . . . . . . . . . . . 15 (⟨𝑋, 𝑌⟩ = ⟨𝑥, 𝑦⟩ ↔ ⟨𝑥, 𝑦⟩ = ⟨𝑋, 𝑌⟩)
26 vex 3497 . . . . . . . . . . . . . . . 16 𝑥 ∈ V
27 vex 3497 . . . . . . . . . . . . . . . 16 𝑦 ∈ V
2826, 27opth 5360 . . . . . . . . . . . . . . 15 (⟨𝑥, 𝑦⟩ = ⟨𝑋, 𝑌⟩ ↔ (𝑥 = 𝑋𝑦 = 𝑌))
2925, 28bitri 277 . . . . . . . . . . . . . 14 (⟨𝑋, 𝑌⟩ = ⟨𝑥, 𝑦⟩ ↔ (𝑥 = 𝑋𝑦 = 𝑌))
30 eqvisset 3511 . . . . . . . . . . . . . . 15 (𝑥 = 𝑋𝑋 ∈ V)
31 eqvisset 3511 . . . . . . . . . . . . . . 15 (𝑦 = 𝑌𝑌 ∈ V)
3230, 31anim12i 614 . . . . . . . . . . . . . 14 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝑋 ∈ V ∧ 𝑌 ∈ V))
3329, 32sylbi 219 . . . . . . . . . . . . 13 (⟨𝑋, 𝑌⟩ = ⟨𝑥, 𝑦⟩ → (𝑋 ∈ V ∧ 𝑌 ∈ V))
3433adantr 483 . . . . . . . . . . . 12 ((⟨𝑋, 𝑌⟩ = ⟨𝑥, 𝑦⟩ ∧ [𝑍 / 𝑧]𝜑) → (𝑋 ∈ V ∧ 𝑌 ∈ V))
3534exlimivv 1929 . . . . . . . . . . 11 (∃𝑥𝑦(⟨𝑋, 𝑌⟩ = ⟨𝑥, 𝑦⟩ ∧ [𝑍 / 𝑧]𝜑) → (𝑋 ∈ V ∧ 𝑌 ∈ V))
3635anim1i 616 . . . . . . . . . 10 ((∃𝑥𝑦(⟨𝑋, 𝑌⟩ = ⟨𝑥, 𝑦⟩ ∧ [𝑍 / 𝑧]𝜑) ∧ 𝑍 ∈ V) → ((𝑋 ∈ V ∧ 𝑌 ∈ V) ∧ 𝑍 ∈ V))
37 df-3an 1085 . . . . . . . . . 10 ((𝑋 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ V) ↔ ((𝑋 ∈ V ∧ 𝑌 ∈ V) ∧ 𝑍 ∈ V))
3836, 37sylibr 236 . . . . . . . . 9 ((∃𝑥𝑦(⟨𝑋, 𝑌⟩ = ⟨𝑥, 𝑦⟩ ∧ [𝑍 / 𝑧]𝜑) ∧ 𝑍 ∈ V) → (𝑋 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ V))
3938expcom 416 . . . . . . . 8 (𝑍 ∈ V → (∃𝑥𝑦(⟨𝑋, 𝑌⟩ = ⟨𝑥, 𝑦⟩ ∧ [𝑍 / 𝑧]𝜑) → (𝑋 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ V)))
4024, 39sylbid 242 . . . . . . 7 (𝑍 ∈ V → (⟨⟨𝑋, 𝑌⟩, 𝑍⟩ ∈ {⟨𝑤, 𝑧⟩ ∣ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)} → (𝑋 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ V)))
4140com12 32 . . . . . 6 (⟨⟨𝑋, 𝑌⟩, 𝑍⟩ ∈ {⟨𝑤, 𝑧⟩ ∣ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)} → (𝑍 ∈ V → (𝑋 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ V)))
42 dfoprab2 7206 . . . . . 6 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨𝑤, 𝑧⟩ ∣ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)}
4341, 42eleq2s 2931 . . . . 5 (⟨⟨𝑋, 𝑌⟩, 𝑍⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} → (𝑍 ∈ V → (𝑋 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ V)))
443, 43sylbi 219 . . . 4 (⟨𝑋, 𝑌⟩{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}𝑍 → (𝑍 ∈ V → (𝑋 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ V)))
4544com12 32 . . 3 (𝑍 ∈ V → (⟨𝑋, 𝑌⟩{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}𝑍 → (𝑋 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ V)))
4645adantl 484 . 2 ((⟨𝑋, 𝑌⟩ ∈ V ∧ 𝑍 ∈ V) → (⟨𝑋, 𝑌⟩{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}𝑍 → (𝑋 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ V)))
472, 46mpcom 38 1 (⟨𝑋, 𝑌⟩{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}𝑍 → (𝑋 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ V))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wex 1776  wcel 2110  Vcvv 3494  [wsbc 3771  cop 4566   class class class wbr 5058  {copab 5120  {coprab 7151
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pr 5321
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3772  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-sn 4561  df-pr 4563  df-op 4567  df-br 5059  df-opab 5121  df-xp 5555  df-rel 5556  df-oprab 7154
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator