Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfoprab2 Structured version   Visualization version   GIF version

Theorem nfoprab2 7209
 Description: The abstraction variables in an operation class abstraction are not free. (Contributed by NM, 25-Apr-1995.) (Revised by David Abernethy, 30-Jul-2012.)
Assertion
Ref Expression
nfoprab2 𝑦{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}

Proof of Theorem nfoprab2
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 df-oprab 7153 . 2 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {𝑤 ∣ ∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)}
2 nfe1 2155 . . . 4 𝑦𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)
32nfex 2345 . . 3 𝑦𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)
43nfab 2988 . 2 𝑦{𝑤 ∣ ∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)}
51, 4nfcxfr 2980 1 𝑦{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}
 Colors of variables: wff setvar class Syntax hints:   ∧ wa 399   = wceq 1538  ∃wex 1781  {cab 2802  Ⅎwnfc 2962  ⟨cop 4556  {coprab 7150 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-ex 1782  df-nf 1786  df-sb 2071  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-oprab 7153 This theorem is referenced by:  ssoprab2b  7216  eqoprab2bw  7217  nfmpo2  7228  ov3  7305  tposoprab  7924
 Copyright terms: Public domain W3C validator