![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfoprab2 | Structured version Visualization version GIF version |
Description: The abstraction variables in an operation class abstraction are not free. (Contributed by NM, 25-Apr-1995.) (Revised by David Abernethy, 30-Jul-2012.) |
Ref | Expression |
---|---|
nfoprab2 | ⊢ Ⅎ𝑦{〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-oprab 6974 | . 2 ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = {𝑤 ∣ ∃𝑥∃𝑦∃𝑧(𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑)} | |
2 | nfe1 2085 | . . . 4 ⊢ Ⅎ𝑦∃𝑦∃𝑧(𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑) | |
3 | 2 | nfex 2262 | . . 3 ⊢ Ⅎ𝑦∃𝑥∃𝑦∃𝑧(𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑) |
4 | 3 | nfab 2932 | . 2 ⊢ Ⅎ𝑦{𝑤 ∣ ∃𝑥∃𝑦∃𝑧(𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑)} |
5 | 1, 4 | nfcxfr 2924 | 1 ⊢ Ⅎ𝑦{〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 387 = wceq 1507 ∃wex 1742 {cab 2753 Ⅎwnfc 2910 〈cop 4441 {coprab 6971 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1964 ax-8 2050 ax-9 2057 ax-10 2077 ax-11 2091 ax-12 2104 ax-13 2299 ax-ext 2745 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2014 df-clab 2754 df-cleq 2765 df-clel 2840 df-nfc 2912 df-oprab 6974 |
This theorem is referenced by: ssoprab2b 7036 nfmpo2 7047 ov3 7121 tposoprab 7724 |
Copyright terms: Public domain | W3C validator |