Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfmpo1 | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for an operation in maps-to notation. (Contributed by NM, 27-Aug-2013.) |
Ref | Expression |
---|---|
nfmpo1 | ⊢ Ⅎ𝑥(𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-mpo 7289 | . 2 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} | |
2 | nfoprab1 7345 | . 2 ⊢ Ⅎ𝑥{〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} | |
3 | 1, 2 | nfcxfr 2906 | 1 ⊢ Ⅎ𝑥(𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 = wceq 1539 ∈ wcel 2107 Ⅎwnfc 2888 {coprab 7285 ∈ cmpo 7286 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-nf 1787 df-sb 2069 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-oprab 7288 df-mpo 7289 |
This theorem is referenced by: ovmpos 7430 ov2gf 7431 ovmpodxf 7432 ovmpodf 7438 ovmpodv2 7440 xpcomco 8858 mapxpen 8939 pwfseqlem2 10424 pwfseqlem4a 10426 pwfseqlem4 10427 gsum2d2lem 19583 gsum2d2 19584 gsumcom2 19585 dprd2d2 19656 cnmpt21 22831 cnmpt2t 22833 cnmptcom 22838 cnmpt2k 22848 xkocnv 22974 numclwlk2lem2f1o 28752 finxpreclem2 35570 mnringmulrcld 41853 fmuldfeqlem1 43130 fmuldfeq 43131 ovmpordxf 45685 |
Copyright terms: Public domain | W3C validator |