![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfmpo1 | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for an operation in maps-to notation. (Contributed by NM, 27-Aug-2013.) |
Ref | Expression |
---|---|
nfmpo1 | ⊢ Ⅎ𝑥(𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-mpo 7416 | . 2 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} | |
2 | nfoprab1 7472 | . 2 ⊢ Ⅎ𝑥{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} | |
3 | 1, 2 | nfcxfr 2899 | 1 ⊢ Ⅎ𝑥(𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 394 = wceq 1539 ∈ wcel 2104 Ⅎwnfc 2881 {coprab 7412 ∈ cmpo 7413 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 |
This theorem depends on definitions: df-bi 206 df-an 395 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-oprab 7415 df-mpo 7416 |
This theorem is referenced by: ovmpos 7558 ov2gf 7559 ovmpodxf 7560 ovmpodf 7566 ovmpodv2 7568 xpcomco 9064 mapxpen 9145 pwfseqlem2 10656 pwfseqlem4a 10658 pwfseqlem4 10659 gsum2d2lem 19882 gsum2d2 19883 gsumcom2 19884 dprd2d2 19955 cnmpt21 23395 cnmpt2t 23397 cnmptcom 23402 cnmpt2k 23412 xkocnv 23538 numclwlk2lem2f1o 29899 finxpreclem2 36574 mnringmulrcld 43289 fmuldfeqlem1 44596 fmuldfeq 44597 ovmpordxf 47102 |
Copyright terms: Public domain | W3C validator |