MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfmpo1 Structured version   Visualization version   GIF version

Theorem nfmpo1 7261
Description: Bound-variable hypothesis builder for an operation in maps-to notation. (Contributed by NM, 27-Aug-2013.)
Assertion
Ref Expression
nfmpo1 𝑥(𝑥𝐴, 𝑦𝐵𝐶)

Proof of Theorem nfmpo1
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-mpo 7188 . 2 (𝑥𝐴, 𝑦𝐵𝐶) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)}
2 nfoprab1 7242 . 2 𝑥{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)}
31, 2nfcxfr 2898 1 𝑥(𝑥𝐴, 𝑦𝐵𝐶)
Colors of variables: wff setvar class
Syntax hints:  wa 399   = wceq 1542  wcel 2114  wnfc 2880  {coprab 7184  cmpo 7185
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711
This theorem depends on definitions:  df-bi 210  df-an 400  df-ex 1787  df-nf 1791  df-sb 2075  df-clab 2718  df-cleq 2731  df-clel 2812  df-nfc 2882  df-oprab 7187  df-mpo 7188
This theorem is referenced by:  ovmpos  7326  ov2gf  7327  ovmpodxf  7328  ovmpodf  7334  ovmpodv2  7336  xpcomco  8669  mapxpen  8746  pwfseqlem2  10172  pwfseqlem4a  10174  pwfseqlem4  10175  gsum2d2lem  19225  gsum2d2  19226  gsumcom2  19227  dprd2d2  19298  cnmpt21  22435  cnmpt2t  22437  cnmptcom  22442  cnmpt2k  22452  xkocnv  22578  numclwlk2lem2f1o  28329  finxpreclem2  35217  mnringmulrcld  41429  fmuldfeqlem1  42706  fmuldfeq  42707  ovmpordxf  45256
  Copyright terms: Public domain W3C validator