MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfmpo1 Structured version   Visualization version   GIF version

Theorem nfmpo1 7491
Description: Bound-variable hypothesis builder for an operation in maps-to notation. (Contributed by NM, 27-Aug-2013.)
Assertion
Ref Expression
nfmpo1 𝑥(𝑥𝐴, 𝑦𝐵𝐶)

Proof of Theorem nfmpo1
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-mpo 7416 . 2 (𝑥𝐴, 𝑦𝐵𝐶) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)}
2 nfoprab1 7472 . 2 𝑥{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)}
31, 2nfcxfr 2899 1 𝑥(𝑥𝐴, 𝑦𝐵𝐶)
Colors of variables: wff setvar class
Syntax hints:  wa 394   = wceq 1539  wcel 2104  wnfc 2881  {coprab 7412  cmpo 7413
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701
This theorem depends on definitions:  df-bi 206  df-an 395  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-oprab 7415  df-mpo 7416
This theorem is referenced by:  ovmpos  7558  ov2gf  7559  ovmpodxf  7560  ovmpodf  7566  ovmpodv2  7568  xpcomco  9064  mapxpen  9145  pwfseqlem2  10656  pwfseqlem4a  10658  pwfseqlem4  10659  gsum2d2lem  19882  gsum2d2  19883  gsumcom2  19884  dprd2d2  19955  cnmpt21  23395  cnmpt2t  23397  cnmptcom  23402  cnmpt2k  23412  xkocnv  23538  numclwlk2lem2f1o  29899  finxpreclem2  36574  mnringmulrcld  43289  fmuldfeqlem1  44596  fmuldfeq  44597  ovmpordxf  47102
  Copyright terms: Public domain W3C validator