MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfmpo1 Structured version   Visualization version   GIF version

Theorem nfmpo1 7333
Description: Bound-variable hypothesis builder for an operation in maps-to notation. (Contributed by NM, 27-Aug-2013.)
Assertion
Ref Expression
nfmpo1 𝑥(𝑥𝐴, 𝑦𝐵𝐶)

Proof of Theorem nfmpo1
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-mpo 7260 . 2 (𝑥𝐴, 𝑦𝐵𝐶) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)}
2 nfoprab1 7314 . 2 𝑥{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)}
31, 2nfcxfr 2904 1 𝑥(𝑥𝐴, 𝑦𝐵𝐶)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1539  wcel 2108  wnfc 2886  {coprab 7256  cmpo 7257
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-oprab 7259  df-mpo 7260
This theorem is referenced by:  ovmpos  7399  ov2gf  7400  ovmpodxf  7401  ovmpodf  7407  ovmpodv2  7409  xpcomco  8802  mapxpen  8879  pwfseqlem2  10346  pwfseqlem4a  10348  pwfseqlem4  10349  gsum2d2lem  19489  gsum2d2  19490  gsumcom2  19491  dprd2d2  19562  cnmpt21  22730  cnmpt2t  22732  cnmptcom  22737  cnmpt2k  22747  xkocnv  22873  numclwlk2lem2f1o  28644  finxpreclem2  35488  mnringmulrcld  41735  fmuldfeqlem1  43013  fmuldfeq  43014  ovmpordxf  45562
  Copyright terms: Public domain W3C validator