![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfmpo1 | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for an operation in maps-to notation. (Contributed by NM, 27-Aug-2013.) |
Ref | Expression |
---|---|
nfmpo1 | ⊢ Ⅎ𝑥(𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-mpo 7425 | . 2 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} | |
2 | nfoprab1 7481 | . 2 ⊢ Ⅎ𝑥{〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} | |
3 | 1, 2 | nfcxfr 2897 | 1 ⊢ Ⅎ𝑥(𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1534 ∈ wcel 2099 Ⅎwnfc 2879 {coprab 7421 ∈ cmpo 7422 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1775 df-nf 1779 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-oprab 7424 df-mpo 7425 |
This theorem is referenced by: ovmpos 7569 ov2gf 7570 ovmpodxf 7571 ovmpodf 7577 ovmpodv2 7579 xpcomco 9087 mapxpen 9168 pwfseqlem2 10683 pwfseqlem4a 10685 pwfseqlem4 10686 gsum2d2lem 19928 gsum2d2 19929 gsumcom2 19930 dprd2d2 20001 cnmpt21 23588 cnmpt2t 23590 cnmptcom 23595 cnmpt2k 23605 xkocnv 23731 numclwlk2lem2f1o 30202 finxpreclem2 36869 mnringmulrcld 43665 fmuldfeqlem1 44970 fmuldfeq 44971 ovmpordxf 47402 |
Copyright terms: Public domain | W3C validator |