MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfmpo1 Structured version   Visualization version   GIF version

Theorem nfmpo1 7469
Description: Bound-variable hypothesis builder for an operation in maps-to notation. (Contributed by NM, 27-Aug-2013.)
Assertion
Ref Expression
nfmpo1 𝑥(𝑥𝐴, 𝑦𝐵𝐶)

Proof of Theorem nfmpo1
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-mpo 7392 . 2 (𝑥𝐴, 𝑦𝐵𝐶) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)}
2 nfoprab1 7450 . 2 𝑥{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)}
31, 2nfcxfr 2889 1 𝑥(𝑥𝐴, 𝑦𝐵𝐶)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wcel 2109  wnfc 2876  {coprab 7388  cmpo 7389
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-oprab 7391  df-mpo 7392
This theorem is referenced by:  ovmpos  7537  ov2gf  7538  ovmpodxf  7539  ovmpodf  7545  ovmpodv2  7547  xpcomco  9031  mapxpen  9107  pwfseqlem2  10612  pwfseqlem4a  10614  pwfseqlem4  10615  gsum2d2lem  19903  gsum2d2  19904  gsumcom2  19905  dprd2d2  19976  cnmpt21  23558  cnmpt2t  23560  cnmptcom  23565  cnmpt2k  23575  xkocnv  23701  numclwlk2lem2f1o  30308  finxpreclem2  37378  mnringmulrcld  44217  fmuldfeqlem1  45580  fmuldfeq  45581  ovmpordxf  48327
  Copyright terms: Public domain W3C validator