MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfmpo1 Structured version   Visualization version   GIF version

Theorem nfmpo1 7426
Description: Bound-variable hypothesis builder for an operation in maps-to notation. (Contributed by NM, 27-Aug-2013.)
Assertion
Ref Expression
nfmpo1 𝑥(𝑥𝐴, 𝑦𝐵𝐶)

Proof of Theorem nfmpo1
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-mpo 7351 . 2 (𝑥𝐴, 𝑦𝐵𝐶) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)}
2 nfoprab1 7407 . 2 𝑥{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)}
31, 2nfcxfr 2892 1 𝑥(𝑥𝐴, 𝑦𝐵𝐶)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1541  wcel 2111  wnfc 2879  {coprab 7347  cmpo 7348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-oprab 7350  df-mpo 7351
This theorem is referenced by:  ovmpos  7494  ov2gf  7495  ovmpodxf  7496  ovmpodf  7502  ovmpodv2  7504  xpcomco  8980  mapxpen  9056  pwfseqlem2  10550  pwfseqlem4a  10552  pwfseqlem4  10553  gsum2d2lem  19885  gsum2d2  19886  gsumcom2  19887  dprd2d2  19958  cnmpt21  23586  cnmpt2t  23588  cnmptcom  23593  cnmpt2k  23603  xkocnv  23729  numclwlk2lem2f1o  30359  finxpreclem2  37434  mnringmulrcld  44331  fmuldfeqlem1  45692  fmuldfeq  45693  ovmpordxf  48449
  Copyright terms: Public domain W3C validator