MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfmpo1 Structured version   Visualization version   GIF version

Theorem nfmpo1 7500
Description: Bound-variable hypothesis builder for an operation in maps-to notation. (Contributed by NM, 27-Aug-2013.)
Assertion
Ref Expression
nfmpo1 𝑥(𝑥𝐴, 𝑦𝐵𝐶)

Proof of Theorem nfmpo1
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-mpo 7425 . 2 (𝑥𝐴, 𝑦𝐵𝐶) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)}
2 nfoprab1 7481 . 2 𝑥{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)}
31, 2nfcxfr 2897 1 𝑥(𝑥𝐴, 𝑦𝐵𝐶)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1534  wcel 2099  wnfc 2879  {coprab 7421  cmpo 7422
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1775  df-nf 1779  df-sb 2061  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-oprab 7424  df-mpo 7425
This theorem is referenced by:  ovmpos  7569  ov2gf  7570  ovmpodxf  7571  ovmpodf  7577  ovmpodv2  7579  xpcomco  9087  mapxpen  9168  pwfseqlem2  10683  pwfseqlem4a  10685  pwfseqlem4  10686  gsum2d2lem  19928  gsum2d2  19929  gsumcom2  19930  dprd2d2  20001  cnmpt21  23588  cnmpt2t  23590  cnmptcom  23595  cnmpt2k  23605  xkocnv  23731  numclwlk2lem2f1o  30202  finxpreclem2  36869  mnringmulrcld  43665  fmuldfeqlem1  44970  fmuldfeq  44971  ovmpordxf  47402
  Copyright terms: Public domain W3C validator