| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfmpo1 | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for an operation in maps-to notation. (Contributed by NM, 27-Aug-2013.) |
| Ref | Expression |
|---|---|
| nfmpo1 | ⊢ Ⅎ𝑥(𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-mpo 7351 | . 2 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} | |
| 2 | nfoprab1 7407 | . 2 ⊢ Ⅎ𝑥{〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} | |
| 3 | 1, 2 | nfcxfr 2892 | 1 ⊢ Ⅎ𝑥(𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ∈ wcel 2111 Ⅎwnfc 2879 {coprab 7347 ∈ cmpo 7348 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-oprab 7350 df-mpo 7351 |
| This theorem is referenced by: ovmpos 7494 ov2gf 7495 ovmpodxf 7496 ovmpodf 7502 ovmpodv2 7504 xpcomco 8980 mapxpen 9056 pwfseqlem2 10550 pwfseqlem4a 10552 pwfseqlem4 10553 gsum2d2lem 19885 gsum2d2 19886 gsumcom2 19887 dprd2d2 19958 cnmpt21 23586 cnmpt2t 23588 cnmptcom 23593 cnmpt2k 23603 xkocnv 23729 numclwlk2lem2f1o 30359 finxpreclem2 37434 mnringmulrcld 44331 fmuldfeqlem1 45692 fmuldfeq 45693 ovmpordxf 48449 |
| Copyright terms: Public domain | W3C validator |