MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tposoprab Structured version   Visualization version   GIF version

Theorem tposoprab 7591
Description: Transposition of a class of ordered triples. (Contributed by Mario Carneiro, 10-Sep-2015.)
Hypothesis
Ref Expression
tposoprab.1 𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}
Assertion
Ref Expression
tposoprab tpos 𝐹 = {⟨⟨𝑦, 𝑥⟩, 𝑧⟩ ∣ 𝜑}
Distinct variable group:   𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝐹(𝑥,𝑦,𝑧)

Proof of Theorem tposoprab
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tposoprab.1 . . 3 𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}
21tposeqi 7588 . 2 tpos 𝐹 = tpos {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}
3 reldmoprab 6943 . . 3 Rel dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}
4 dftpos3 7573 . . 3 (Rel dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} → tpos {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨⟨𝑎, 𝑏⟩, 𝑐⟩ ∣ ⟨𝑏, 𝑎⟩{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}𝑐})
53, 4ax-mp 5 . 2 tpos {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨⟨𝑎, 𝑏⟩, 𝑐⟩ ∣ ⟨𝑏, 𝑎⟩{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}𝑐}
6 nfcv 2907 . . . . 5 𝑦𝑏, 𝑎
7 nfoprab2 6903 . . . . 5 𝑦{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}
8 nfcv 2907 . . . . 5 𝑦𝑐
96, 7, 8nfbr 4856 . . . 4 𝑦𝑏, 𝑎⟩{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}𝑐
10 nfcv 2907 . . . . 5 𝑥𝑏, 𝑎
11 nfoprab1 6902 . . . . 5 𝑥{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}
12 nfcv 2907 . . . . 5 𝑥𝑐
1310, 11, 12nfbr 4856 . . . 4 𝑥𝑏, 𝑎⟩{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}𝑐
14 nfv 2009 . . . 4 𝑎𝑥, 𝑦⟩{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}𝑐
15 nfv 2009 . . . 4 𝑏𝑥, 𝑦⟩{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}𝑐
16 opeq12 4561 . . . . . 6 ((𝑏 = 𝑥𝑎 = 𝑦) → ⟨𝑏, 𝑎⟩ = ⟨𝑥, 𝑦⟩)
1716ancoms 450 . . . . 5 ((𝑎 = 𝑦𝑏 = 𝑥) → ⟨𝑏, 𝑎⟩ = ⟨𝑥, 𝑦⟩)
1817breq1d 4819 . . . 4 ((𝑎 = 𝑦𝑏 = 𝑥) → (⟨𝑏, 𝑎⟩{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}𝑐 ↔ ⟨𝑥, 𝑦⟩{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}𝑐))
199, 13, 14, 15, 18cbvoprab12 6927 . . 3 {⟨⟨𝑎, 𝑏⟩, 𝑐⟩ ∣ ⟨𝑏, 𝑎⟩{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}𝑐} = {⟨⟨𝑦, 𝑥⟩, 𝑐⟩ ∣ ⟨𝑥, 𝑦⟩{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}𝑐}
20 nfcv 2907 . . . . 5 𝑧𝑥, 𝑦
21 nfoprab3 6904 . . . . 5 𝑧{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}
22 nfcv 2907 . . . . 5 𝑧𝑐
2320, 21, 22nfbr 4856 . . . 4 𝑧𝑥, 𝑦⟩{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}𝑐
24 nfv 2009 . . . 4 𝑐𝜑
25 breq2 4813 . . . . 5 (𝑐 = 𝑧 → (⟨𝑥, 𝑦⟩{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}𝑐 ↔ ⟨𝑥, 𝑦⟩{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}𝑧))
26 df-br 4810 . . . . . 6 (⟨𝑥, 𝑦⟩{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}𝑧 ↔ ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑})
27 oprabid 6873 . . . . . 6 (⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ↔ 𝜑)
2826, 27bitri 266 . . . . 5 (⟨𝑥, 𝑦⟩{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}𝑧𝜑)
2925, 28syl6bb 278 . . . 4 (𝑐 = 𝑧 → (⟨𝑥, 𝑦⟩{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}𝑐𝜑))
3023, 24, 29cbvoprab3 6929 . . 3 {⟨⟨𝑦, 𝑥⟩, 𝑐⟩ ∣ ⟨𝑥, 𝑦⟩{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}𝑐} = {⟨⟨𝑦, 𝑥⟩, 𝑧⟩ ∣ 𝜑}
3119, 30eqtri 2787 . 2 {⟨⟨𝑎, 𝑏⟩, 𝑐⟩ ∣ ⟨𝑏, 𝑎⟩{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}𝑐} = {⟨⟨𝑦, 𝑥⟩, 𝑧⟩ ∣ 𝜑}
322, 5, 313eqtri 2791 1 tpos 𝐹 = {⟨⟨𝑦, 𝑥⟩, 𝑧⟩ ∣ 𝜑}
Colors of variables: wff setvar class
Syntax hints:  wa 384   = wceq 1652  wcel 2155  cop 4340   class class class wbr 4809  dom cdm 5277  Rel wrel 5282  {coprab 6843  tpos ctpos 7554
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-ral 3060  df-rex 3061  df-rab 3064  df-v 3352  df-sbc 3597  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-op 4341  df-uni 4595  df-br 4810  df-opab 4872  df-mpt 4889  df-id 5185  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-iota 6031  df-fun 6070  df-fn 6071  df-fv 6076  df-oprab 6846  df-tpos 7555
This theorem is referenced by:  tposmpt2  7592
  Copyright terms: Public domain W3C validator