MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tposoprab Structured version   Visualization version   GIF version

Theorem tposoprab 8202
Description: Transposition of a class of ordered triples. (Contributed by Mario Carneiro, 10-Sep-2015.)
Hypothesis
Ref Expression
tposoprab.1 𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}
Assertion
Ref Expression
tposoprab tpos 𝐹 = {⟨⟨𝑦, 𝑥⟩, 𝑧⟩ ∣ 𝜑}
Distinct variable group:   𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝐹(𝑥,𝑦,𝑧)

Proof of Theorem tposoprab
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tposoprab.1 . . 3 𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}
21tposeqi 8199 . 2 tpos 𝐹 = tpos {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}
3 reldmoprab 7460 . . 3 Rel dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}
4 dftpos3 8184 . . 3 (Rel dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} → tpos {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨⟨𝑎, 𝑏⟩, 𝑐⟩ ∣ ⟨𝑏, 𝑎⟩{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}𝑐})
53, 4ax-mp 5 . 2 tpos {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨⟨𝑎, 𝑏⟩, 𝑐⟩ ∣ ⟨𝑏, 𝑎⟩{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}𝑐}
6 nfcv 2891 . . . . 5 𝑦𝑏, 𝑎
7 nfoprab2 7415 . . . . 5 𝑦{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}
8 nfcv 2891 . . . . 5 𝑦𝑐
96, 7, 8nfbr 5142 . . . 4 𝑦𝑏, 𝑎⟩{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}𝑐
10 nfcv 2891 . . . . 5 𝑥𝑏, 𝑎
11 nfoprab1 7414 . . . . 5 𝑥{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}
12 nfcv 2891 . . . . 5 𝑥𝑐
1310, 11, 12nfbr 5142 . . . 4 𝑥𝑏, 𝑎⟩{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}𝑐
14 nfv 1914 . . . 4 𝑎𝑥, 𝑦⟩{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}𝑐
15 nfv 1914 . . . 4 𝑏𝑥, 𝑦⟩{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}𝑐
16 opeq12 4829 . . . . . 6 ((𝑏 = 𝑥𝑎 = 𝑦) → ⟨𝑏, 𝑎⟩ = ⟨𝑥, 𝑦⟩)
1716ancoms 458 . . . . 5 ((𝑎 = 𝑦𝑏 = 𝑥) → ⟨𝑏, 𝑎⟩ = ⟨𝑥, 𝑦⟩)
1817breq1d 5105 . . . 4 ((𝑎 = 𝑦𝑏 = 𝑥) → (⟨𝑏, 𝑎⟩{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}𝑐 ↔ ⟨𝑥, 𝑦⟩{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}𝑐))
199, 13, 14, 15, 18cbvoprab12 7442 . . 3 {⟨⟨𝑎, 𝑏⟩, 𝑐⟩ ∣ ⟨𝑏, 𝑎⟩{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}𝑐} = {⟨⟨𝑦, 𝑥⟩, 𝑐⟩ ∣ ⟨𝑥, 𝑦⟩{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}𝑐}
20 nfcv 2891 . . . . 5 𝑧𝑥, 𝑦
21 nfoprab3 7416 . . . . 5 𝑧{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}
22 nfcv 2891 . . . . 5 𝑧𝑐
2320, 21, 22nfbr 5142 . . . 4 𝑧𝑥, 𝑦⟩{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}𝑐
24 nfv 1914 . . . 4 𝑐𝜑
25 breq2 5099 . . . . 5 (𝑐 = 𝑧 → (⟨𝑥, 𝑦⟩{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}𝑐 ↔ ⟨𝑥, 𝑦⟩{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}𝑧))
26 df-br 5096 . . . . . 6 (⟨𝑥, 𝑦⟩{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}𝑧 ↔ ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑})
27 oprabidw 7384 . . . . . 6 (⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ↔ 𝜑)
2826, 27bitri 275 . . . . 5 (⟨𝑥, 𝑦⟩{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}𝑧𝜑)
2925, 28bitrdi 287 . . . 4 (𝑐 = 𝑧 → (⟨𝑥, 𝑦⟩{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}𝑐𝜑))
3023, 24, 29cbvoprab3 7444 . . 3 {⟨⟨𝑦, 𝑥⟩, 𝑐⟩ ∣ ⟨𝑥, 𝑦⟩{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}𝑐} = {⟨⟨𝑦, 𝑥⟩, 𝑧⟩ ∣ 𝜑}
3119, 30eqtri 2752 . 2 {⟨⟨𝑎, 𝑏⟩, 𝑐⟩ ∣ ⟨𝑏, 𝑎⟩{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}𝑐} = {⟨⟨𝑦, 𝑥⟩, 𝑧⟩ ∣ 𝜑}
322, 5, 313eqtri 2756 1 tpos 𝐹 = {⟨⟨𝑦, 𝑥⟩, 𝑧⟩ ∣ 𝜑}
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wcel 2109  cop 4585   class class class wbr 5095  dom cdm 5623  Rel wrel 5628  {coprab 7354  tpos ctpos 8165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-fv 6494  df-oprab 7357  df-tpos 8166
This theorem is referenced by:  tposmpo  8203
  Copyright terms: Public domain W3C validator