MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  riota2df Structured version   Visualization version   GIF version

Theorem riota2df 6827
Description: A deduction version of riota2f 6828. (Contributed by NM, 17-Feb-2013.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
riota2df.1 𝑥𝜑
riota2df.2 (𝜑𝑥𝐵)
riota2df.3 (𝜑 → Ⅎ𝑥𝜒)
riota2df.4 (𝜑𝐵𝐴)
riota2df.5 ((𝜑𝑥 = 𝐵) → (𝜓𝜒))
Assertion
Ref Expression
riota2df ((𝜑 ∧ ∃!𝑥𝐴 𝜓) → (𝜒 ↔ (𝑥𝐴 𝜓) = 𝐵))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)   𝜒(𝑥)   𝐵(𝑥)

Proof of Theorem riota2df
StepHypRef Expression
1 riota2df.4 . . . 4 (𝜑𝐵𝐴)
21adantr 472 . . 3 ((𝜑 ∧ ∃!𝑥𝐴 𝜓) → 𝐵𝐴)
3 simpr 477 . . . 4 ((𝜑 ∧ ∃!𝑥𝐴 𝜓) → ∃!𝑥𝐴 𝜓)
4 df-reu 3062 . . . 4 (∃!𝑥𝐴 𝜓 ↔ ∃!𝑥(𝑥𝐴𝜓))
53, 4sylib 209 . . 3 ((𝜑 ∧ ∃!𝑥𝐴 𝜓) → ∃!𝑥(𝑥𝐴𝜓))
6 simpr 477 . . . . . 6 (((𝜑 ∧ ∃!𝑥𝐴 𝜓) ∧ 𝑥 = 𝐵) → 𝑥 = 𝐵)
72adantr 472 . . . . . 6 (((𝜑 ∧ ∃!𝑥𝐴 𝜓) ∧ 𝑥 = 𝐵) → 𝐵𝐴)
86, 7eqeltrd 2844 . . . . 5 (((𝜑 ∧ ∃!𝑥𝐴 𝜓) ∧ 𝑥 = 𝐵) → 𝑥𝐴)
98biantrurd 528 . . . 4 (((𝜑 ∧ ∃!𝑥𝐴 𝜓) ∧ 𝑥 = 𝐵) → (𝜓 ↔ (𝑥𝐴𝜓)))
10 riota2df.5 . . . . 5 ((𝜑𝑥 = 𝐵) → (𝜓𝜒))
1110adantlr 706 . . . 4 (((𝜑 ∧ ∃!𝑥𝐴 𝜓) ∧ 𝑥 = 𝐵) → (𝜓𝜒))
129, 11bitr3d 272 . . 3 (((𝜑 ∧ ∃!𝑥𝐴 𝜓) ∧ 𝑥 = 𝐵) → ((𝑥𝐴𝜓) ↔ 𝜒))
13 riota2df.1 . . . 4 𝑥𝜑
14 nfreu1 3257 . . . 4 𝑥∃!𝑥𝐴 𝜓
1513, 14nfan 1998 . . 3 𝑥(𝜑 ∧ ∃!𝑥𝐴 𝜓)
16 riota2df.3 . . . 4 (𝜑 → Ⅎ𝑥𝜒)
1716adantr 472 . . 3 ((𝜑 ∧ ∃!𝑥𝐴 𝜓) → Ⅎ𝑥𝜒)
18 riota2df.2 . . . 4 (𝜑𝑥𝐵)
1918adantr 472 . . 3 ((𝜑 ∧ ∃!𝑥𝐴 𝜓) → 𝑥𝐵)
202, 5, 12, 15, 17, 19iota2df 6057 . 2 ((𝜑 ∧ ∃!𝑥𝐴 𝜓) → (𝜒 ↔ (℩𝑥(𝑥𝐴𝜓)) = 𝐵))
21 df-riota 6807 . . 3 (𝑥𝐴 𝜓) = (℩𝑥(𝑥𝐴𝜓))
2221eqeq1i 2770 . 2 ((𝑥𝐴 𝜓) = 𝐵 ↔ (℩𝑥(𝑥𝐴𝜓)) = 𝐵)
2320, 22syl6bbr 280 1 ((𝜑 ∧ ∃!𝑥𝐴 𝜓) → (𝜒 ↔ (𝑥𝐴 𝜓) = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384   = wceq 1652  wnf 1878  wcel 2155  ∃!weu 2581  wnfc 2894  ∃!wreu 3057  cio 6031  crio 6806
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ral 3060  df-rex 3061  df-reu 3062  df-v 3352  df-sbc 3599  df-un 3739  df-sn 4337  df-pr 4339  df-uni 4597  df-iota 6033  df-riota 6807
This theorem is referenced by:  riota2f  6828  riotaeqimp  6830  riota5f  6832  mapdheq  37705  hdmap1eq  37778  hdmapval2lem  37808
  Copyright terms: Public domain W3C validator