Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > riota2df | Structured version Visualization version GIF version |
Description: A deduction version of riota2f 7237. (Contributed by NM, 17-Feb-2013.) (Revised by Mario Carneiro, 15-Oct-2016.) |
Ref | Expression |
---|---|
riota2df.1 | ⊢ Ⅎ𝑥𝜑 |
riota2df.2 | ⊢ (𝜑 → Ⅎ𝑥𝐵) |
riota2df.3 | ⊢ (𝜑 → Ⅎ𝑥𝜒) |
riota2df.4 | ⊢ (𝜑 → 𝐵 ∈ 𝐴) |
riota2df.5 | ⊢ ((𝜑 ∧ 𝑥 = 𝐵) → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
riota2df | ⊢ ((𝜑 ∧ ∃!𝑥 ∈ 𝐴 𝜓) → (𝜒 ↔ (℩𝑥 ∈ 𝐴 𝜓) = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | riota2df.4 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝐴) | |
2 | 1 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ∃!𝑥 ∈ 𝐴 𝜓) → 𝐵 ∈ 𝐴) |
3 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ ∃!𝑥 ∈ 𝐴 𝜓) → ∃!𝑥 ∈ 𝐴 𝜓) | |
4 | df-reu 3070 | . . . 4 ⊢ (∃!𝑥 ∈ 𝐴 𝜓 ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) | |
5 | 3, 4 | sylib 217 | . . 3 ⊢ ((𝜑 ∧ ∃!𝑥 ∈ 𝐴 𝜓) → ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) |
6 | simpr 484 | . . . . . 6 ⊢ (((𝜑 ∧ ∃!𝑥 ∈ 𝐴 𝜓) ∧ 𝑥 = 𝐵) → 𝑥 = 𝐵) | |
7 | 2 | adantr 480 | . . . . . 6 ⊢ (((𝜑 ∧ ∃!𝑥 ∈ 𝐴 𝜓) ∧ 𝑥 = 𝐵) → 𝐵 ∈ 𝐴) |
8 | 6, 7 | eqeltrd 2839 | . . . . 5 ⊢ (((𝜑 ∧ ∃!𝑥 ∈ 𝐴 𝜓) ∧ 𝑥 = 𝐵) → 𝑥 ∈ 𝐴) |
9 | 8 | biantrurd 532 | . . . 4 ⊢ (((𝜑 ∧ ∃!𝑥 ∈ 𝐴 𝜓) ∧ 𝑥 = 𝐵) → (𝜓 ↔ (𝑥 ∈ 𝐴 ∧ 𝜓))) |
10 | riota2df.5 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 = 𝐵) → (𝜓 ↔ 𝜒)) | |
11 | 10 | adantlr 711 | . . . 4 ⊢ (((𝜑 ∧ ∃!𝑥 ∈ 𝐴 𝜓) ∧ 𝑥 = 𝐵) → (𝜓 ↔ 𝜒)) |
12 | 9, 11 | bitr3d 280 | . . 3 ⊢ (((𝜑 ∧ ∃!𝑥 ∈ 𝐴 𝜓) ∧ 𝑥 = 𝐵) → ((𝑥 ∈ 𝐴 ∧ 𝜓) ↔ 𝜒)) |
13 | riota2df.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
14 | nfreu1 3296 | . . . 4 ⊢ Ⅎ𝑥∃!𝑥 ∈ 𝐴 𝜓 | |
15 | 13, 14 | nfan 1903 | . . 3 ⊢ Ⅎ𝑥(𝜑 ∧ ∃!𝑥 ∈ 𝐴 𝜓) |
16 | riota2df.3 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝜒) | |
17 | 16 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ∃!𝑥 ∈ 𝐴 𝜓) → Ⅎ𝑥𝜒) |
18 | riota2df.2 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝐵) | |
19 | 18 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ∃!𝑥 ∈ 𝐴 𝜓) → Ⅎ𝑥𝐵) |
20 | 2, 5, 12, 15, 17, 19 | iota2df 6405 | . 2 ⊢ ((𝜑 ∧ ∃!𝑥 ∈ 𝐴 𝜓) → (𝜒 ↔ (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) = 𝐵)) |
21 | df-riota 7212 | . . 3 ⊢ (℩𝑥 ∈ 𝐴 𝜓) = (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) | |
22 | 21 | eqeq1i 2743 | . 2 ⊢ ((℩𝑥 ∈ 𝐴 𝜓) = 𝐵 ↔ (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) = 𝐵) |
23 | 20, 22 | bitr4di 288 | 1 ⊢ ((𝜑 ∧ ∃!𝑥 ∈ 𝐴 𝜓) → (𝜒 ↔ (℩𝑥 ∈ 𝐴 𝜓) = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 Ⅎwnf 1787 ∈ wcel 2108 ∃!weu 2568 Ⅎwnfc 2886 ∃!wreu 3065 ℩cio 6374 ℩crio 7211 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-reu 3070 df-v 3424 df-un 3888 df-in 3890 df-ss 3900 df-sn 4559 df-pr 4561 df-uni 4837 df-iota 6376 df-riota 7212 |
This theorem is referenced by: riota2f 7237 riotaeqimp 7239 riota5f 7241 mapdheq 39669 hdmap1eq 39742 hdmapval2lem 39772 |
Copyright terms: Public domain | W3C validator |