![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > riota2df | Structured version Visualization version GIF version |
Description: A deduction version of riota2f 7429. (Contributed by NM, 17-Feb-2013.) (Revised by Mario Carneiro, 15-Oct-2016.) |
Ref | Expression |
---|---|
riota2df.1 | ⊢ Ⅎ𝑥𝜑 |
riota2df.2 | ⊢ (𝜑 → Ⅎ𝑥𝐵) |
riota2df.3 | ⊢ (𝜑 → Ⅎ𝑥𝜒) |
riota2df.4 | ⊢ (𝜑 → 𝐵 ∈ 𝐴) |
riota2df.5 | ⊢ ((𝜑 ∧ 𝑥 = 𝐵) → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
riota2df | ⊢ ((𝜑 ∧ ∃!𝑥 ∈ 𝐴 𝜓) → (𝜒 ↔ (℩𝑥 ∈ 𝐴 𝜓) = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | riota2df.4 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝐴) | |
2 | 1 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ∃!𝑥 ∈ 𝐴 𝜓) → 𝐵 ∈ 𝐴) |
3 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ ∃!𝑥 ∈ 𝐴 𝜓) → ∃!𝑥 ∈ 𝐴 𝜓) | |
4 | df-reu 3389 | . . . 4 ⊢ (∃!𝑥 ∈ 𝐴 𝜓 ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) | |
5 | 3, 4 | sylib 218 | . . 3 ⊢ ((𝜑 ∧ ∃!𝑥 ∈ 𝐴 𝜓) → ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) |
6 | simpr 484 | . . . . . 6 ⊢ (((𝜑 ∧ ∃!𝑥 ∈ 𝐴 𝜓) ∧ 𝑥 = 𝐵) → 𝑥 = 𝐵) | |
7 | 2 | adantr 480 | . . . . . 6 ⊢ (((𝜑 ∧ ∃!𝑥 ∈ 𝐴 𝜓) ∧ 𝑥 = 𝐵) → 𝐵 ∈ 𝐴) |
8 | 6, 7 | eqeltrd 2844 | . . . . 5 ⊢ (((𝜑 ∧ ∃!𝑥 ∈ 𝐴 𝜓) ∧ 𝑥 = 𝐵) → 𝑥 ∈ 𝐴) |
9 | 8 | biantrurd 532 | . . . 4 ⊢ (((𝜑 ∧ ∃!𝑥 ∈ 𝐴 𝜓) ∧ 𝑥 = 𝐵) → (𝜓 ↔ (𝑥 ∈ 𝐴 ∧ 𝜓))) |
10 | riota2df.5 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 = 𝐵) → (𝜓 ↔ 𝜒)) | |
11 | 10 | adantlr 714 | . . . 4 ⊢ (((𝜑 ∧ ∃!𝑥 ∈ 𝐴 𝜓) ∧ 𝑥 = 𝐵) → (𝜓 ↔ 𝜒)) |
12 | 9, 11 | bitr3d 281 | . . 3 ⊢ (((𝜑 ∧ ∃!𝑥 ∈ 𝐴 𝜓) ∧ 𝑥 = 𝐵) → ((𝑥 ∈ 𝐴 ∧ 𝜓) ↔ 𝜒)) |
13 | riota2df.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
14 | nfreu1 3420 | . . . 4 ⊢ Ⅎ𝑥∃!𝑥 ∈ 𝐴 𝜓 | |
15 | 13, 14 | nfan 1898 | . . 3 ⊢ Ⅎ𝑥(𝜑 ∧ ∃!𝑥 ∈ 𝐴 𝜓) |
16 | riota2df.3 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝜒) | |
17 | 16 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ∃!𝑥 ∈ 𝐴 𝜓) → Ⅎ𝑥𝜒) |
18 | riota2df.2 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝐵) | |
19 | 18 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ∃!𝑥 ∈ 𝐴 𝜓) → Ⅎ𝑥𝐵) |
20 | 2, 5, 12, 15, 17, 19 | iota2df 6560 | . 2 ⊢ ((𝜑 ∧ ∃!𝑥 ∈ 𝐴 𝜓) → (𝜒 ↔ (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) = 𝐵)) |
21 | df-riota 7404 | . . 3 ⊢ (℩𝑥 ∈ 𝐴 𝜓) = (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) | |
22 | 21 | eqeq1i 2745 | . 2 ⊢ ((℩𝑥 ∈ 𝐴 𝜓) = 𝐵 ↔ (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) = 𝐵) |
23 | 20, 22 | bitr4di 289 | 1 ⊢ ((𝜑 ∧ ∃!𝑥 ∈ 𝐴 𝜓) → (𝜒 ↔ (℩𝑥 ∈ 𝐴 𝜓) = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 Ⅎwnf 1781 ∈ wcel 2108 ∃!weu 2571 Ⅎwnfc 2893 ∃!wreu 3386 ℩cio 6523 ℩crio 7403 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-reu 3389 df-v 3490 df-un 3981 df-ss 3993 df-sn 4649 df-pr 4651 df-uni 4932 df-iota 6525 df-riota 7404 |
This theorem is referenced by: riota2f 7429 riotaeqimp 7431 riota5f 7433 mapdheq 41685 hdmap1eq 41758 hdmapval2lem 41788 |
Copyright terms: Public domain | W3C validator |