MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  riota2df Structured version   Visualization version   GIF version

Theorem riota2df 7236
Description: A deduction version of riota2f 7237. (Contributed by NM, 17-Feb-2013.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
riota2df.1 𝑥𝜑
riota2df.2 (𝜑𝑥𝐵)
riota2df.3 (𝜑 → Ⅎ𝑥𝜒)
riota2df.4 (𝜑𝐵𝐴)
riota2df.5 ((𝜑𝑥 = 𝐵) → (𝜓𝜒))
Assertion
Ref Expression
riota2df ((𝜑 ∧ ∃!𝑥𝐴 𝜓) → (𝜒 ↔ (𝑥𝐴 𝜓) = 𝐵))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)   𝜒(𝑥)   𝐵(𝑥)

Proof of Theorem riota2df
StepHypRef Expression
1 riota2df.4 . . . 4 (𝜑𝐵𝐴)
21adantr 480 . . 3 ((𝜑 ∧ ∃!𝑥𝐴 𝜓) → 𝐵𝐴)
3 simpr 484 . . . 4 ((𝜑 ∧ ∃!𝑥𝐴 𝜓) → ∃!𝑥𝐴 𝜓)
4 df-reu 3070 . . . 4 (∃!𝑥𝐴 𝜓 ↔ ∃!𝑥(𝑥𝐴𝜓))
53, 4sylib 217 . . 3 ((𝜑 ∧ ∃!𝑥𝐴 𝜓) → ∃!𝑥(𝑥𝐴𝜓))
6 simpr 484 . . . . . 6 (((𝜑 ∧ ∃!𝑥𝐴 𝜓) ∧ 𝑥 = 𝐵) → 𝑥 = 𝐵)
72adantr 480 . . . . . 6 (((𝜑 ∧ ∃!𝑥𝐴 𝜓) ∧ 𝑥 = 𝐵) → 𝐵𝐴)
86, 7eqeltrd 2839 . . . . 5 (((𝜑 ∧ ∃!𝑥𝐴 𝜓) ∧ 𝑥 = 𝐵) → 𝑥𝐴)
98biantrurd 532 . . . 4 (((𝜑 ∧ ∃!𝑥𝐴 𝜓) ∧ 𝑥 = 𝐵) → (𝜓 ↔ (𝑥𝐴𝜓)))
10 riota2df.5 . . . . 5 ((𝜑𝑥 = 𝐵) → (𝜓𝜒))
1110adantlr 711 . . . 4 (((𝜑 ∧ ∃!𝑥𝐴 𝜓) ∧ 𝑥 = 𝐵) → (𝜓𝜒))
129, 11bitr3d 280 . . 3 (((𝜑 ∧ ∃!𝑥𝐴 𝜓) ∧ 𝑥 = 𝐵) → ((𝑥𝐴𝜓) ↔ 𝜒))
13 riota2df.1 . . . 4 𝑥𝜑
14 nfreu1 3296 . . . 4 𝑥∃!𝑥𝐴 𝜓
1513, 14nfan 1903 . . 3 𝑥(𝜑 ∧ ∃!𝑥𝐴 𝜓)
16 riota2df.3 . . . 4 (𝜑 → Ⅎ𝑥𝜒)
1716adantr 480 . . 3 ((𝜑 ∧ ∃!𝑥𝐴 𝜓) → Ⅎ𝑥𝜒)
18 riota2df.2 . . . 4 (𝜑𝑥𝐵)
1918adantr 480 . . 3 ((𝜑 ∧ ∃!𝑥𝐴 𝜓) → 𝑥𝐵)
202, 5, 12, 15, 17, 19iota2df 6405 . 2 ((𝜑 ∧ ∃!𝑥𝐴 𝜓) → (𝜒 ↔ (℩𝑥(𝑥𝐴𝜓)) = 𝐵))
21 df-riota 7212 . . 3 (𝑥𝐴 𝜓) = (℩𝑥(𝑥𝐴𝜓))
2221eqeq1i 2743 . 2 ((𝑥𝐴 𝜓) = 𝐵 ↔ (℩𝑥(𝑥𝐴𝜓)) = 𝐵)
2320, 22bitr4di 288 1 ((𝜑 ∧ ∃!𝑥𝐴 𝜓) → (𝜒 ↔ (𝑥𝐴 𝜓) = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wnf 1787  wcel 2108  ∃!weu 2568  wnfc 2886  ∃!wreu 3065  cio 6374  crio 7211
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-reu 3070  df-v 3424  df-un 3888  df-in 3890  df-ss 3900  df-sn 4559  df-pr 4561  df-uni 4837  df-iota 6376  df-riota 7212
This theorem is referenced by:  riota2f  7237  riotaeqimp  7239  riota5f  7241  mapdheq  39669  hdmap1eq  39742  hdmapval2lem  39772
  Copyright terms: Public domain W3C validator