| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > riota2df | Structured version Visualization version GIF version | ||
| Description: A deduction version of riota2f 7412. (Contributed by NM, 17-Feb-2013.) (Revised by Mario Carneiro, 15-Oct-2016.) |
| Ref | Expression |
|---|---|
| riota2df.1 | ⊢ Ⅎ𝑥𝜑 |
| riota2df.2 | ⊢ (𝜑 → Ⅎ𝑥𝐵) |
| riota2df.3 | ⊢ (𝜑 → Ⅎ𝑥𝜒) |
| riota2df.4 | ⊢ (𝜑 → 𝐵 ∈ 𝐴) |
| riota2df.5 | ⊢ ((𝜑 ∧ 𝑥 = 𝐵) → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| riota2df | ⊢ ((𝜑 ∧ ∃!𝑥 ∈ 𝐴 𝜓) → (𝜒 ↔ (℩𝑥 ∈ 𝐴 𝜓) = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | riota2df.4 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝐴) | |
| 2 | 1 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ∃!𝑥 ∈ 𝐴 𝜓) → 𝐵 ∈ 𝐴) |
| 3 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ ∃!𝑥 ∈ 𝐴 𝜓) → ∃!𝑥 ∈ 𝐴 𝜓) | |
| 4 | df-reu 3381 | . . . 4 ⊢ (∃!𝑥 ∈ 𝐴 𝜓 ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) | |
| 5 | 3, 4 | sylib 218 | . . 3 ⊢ ((𝜑 ∧ ∃!𝑥 ∈ 𝐴 𝜓) → ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) |
| 6 | simpr 484 | . . . . . 6 ⊢ (((𝜑 ∧ ∃!𝑥 ∈ 𝐴 𝜓) ∧ 𝑥 = 𝐵) → 𝑥 = 𝐵) | |
| 7 | 2 | adantr 480 | . . . . . 6 ⊢ (((𝜑 ∧ ∃!𝑥 ∈ 𝐴 𝜓) ∧ 𝑥 = 𝐵) → 𝐵 ∈ 𝐴) |
| 8 | 6, 7 | eqeltrd 2841 | . . . . 5 ⊢ (((𝜑 ∧ ∃!𝑥 ∈ 𝐴 𝜓) ∧ 𝑥 = 𝐵) → 𝑥 ∈ 𝐴) |
| 9 | 8 | biantrurd 532 | . . . 4 ⊢ (((𝜑 ∧ ∃!𝑥 ∈ 𝐴 𝜓) ∧ 𝑥 = 𝐵) → (𝜓 ↔ (𝑥 ∈ 𝐴 ∧ 𝜓))) |
| 10 | riota2df.5 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 = 𝐵) → (𝜓 ↔ 𝜒)) | |
| 11 | 10 | adantlr 715 | . . . 4 ⊢ (((𝜑 ∧ ∃!𝑥 ∈ 𝐴 𝜓) ∧ 𝑥 = 𝐵) → (𝜓 ↔ 𝜒)) |
| 12 | 9, 11 | bitr3d 281 | . . 3 ⊢ (((𝜑 ∧ ∃!𝑥 ∈ 𝐴 𝜓) ∧ 𝑥 = 𝐵) → ((𝑥 ∈ 𝐴 ∧ 𝜓) ↔ 𝜒)) |
| 13 | riota2df.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 14 | nfreu1 3412 | . . . 4 ⊢ Ⅎ𝑥∃!𝑥 ∈ 𝐴 𝜓 | |
| 15 | 13, 14 | nfan 1899 | . . 3 ⊢ Ⅎ𝑥(𝜑 ∧ ∃!𝑥 ∈ 𝐴 𝜓) |
| 16 | riota2df.3 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝜒) | |
| 17 | 16 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ∃!𝑥 ∈ 𝐴 𝜓) → Ⅎ𝑥𝜒) |
| 18 | riota2df.2 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝐵) | |
| 19 | 18 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ∃!𝑥 ∈ 𝐴 𝜓) → Ⅎ𝑥𝐵) |
| 20 | 2, 5, 12, 15, 17, 19 | iota2df 6548 | . 2 ⊢ ((𝜑 ∧ ∃!𝑥 ∈ 𝐴 𝜓) → (𝜒 ↔ (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) = 𝐵)) |
| 21 | df-riota 7388 | . . 3 ⊢ (℩𝑥 ∈ 𝐴 𝜓) = (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) | |
| 22 | 21 | eqeq1i 2742 | . 2 ⊢ ((℩𝑥 ∈ 𝐴 𝜓) = 𝐵 ↔ (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) = 𝐵) |
| 23 | 20, 22 | bitr4di 289 | 1 ⊢ ((𝜑 ∧ ∃!𝑥 ∈ 𝐴 𝜓) → (𝜒 ↔ (℩𝑥 ∈ 𝐴 𝜓) = 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2108 ∃!weu 2568 Ⅎwnfc 2890 ∃!wreu 3378 ℩cio 6512 ℩crio 7387 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ral 3062 df-rex 3071 df-reu 3381 df-v 3482 df-un 3956 df-ss 3968 df-sn 4627 df-pr 4629 df-uni 4908 df-iota 6514 df-riota 7388 |
| This theorem is referenced by: riota2f 7412 riotaeqimp 7414 riota5f 7416 mapdheq 41730 hdmap1eq 41803 hdmapval2lem 41833 |
| Copyright terms: Public domain | W3C validator |