Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2reu8 Structured version   Visualization version   GIF version

Theorem 2reu8 44604
Description: Two equivalent expressions for double restricted existential uniqueness, analogous to 2eu8 2660. Curiously, we can put ∃! on either of the internal conjuncts but not both. We can also commute ∃!𝑥𝐴∃!𝑦𝐵 using 2reu7 44603. (Contributed by Alexander van der Vekens, 2-Jul-2017.)
Assertion
Ref Expression
2reu8 (∃!𝑥𝐴 ∃!𝑦𝐵 (∃𝑥𝐴 𝜑 ∧ ∃𝑦𝐵 𝜑) ↔ ∃!𝑥𝐴 ∃!𝑦𝐵 (∃!𝑥𝐴 𝜑 ∧ ∃𝑦𝐵 𝜑))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem 2reu8
StepHypRef Expression
1 2reu2 3831 . . 3 (∃!𝑥𝐴𝑦𝐵 𝜑 → (∃!𝑦𝐵 ∃!𝑥𝐴 𝜑 ↔ ∃!𝑦𝐵𝑥𝐴 𝜑))
21pm5.32i 575 . 2 ((∃!𝑥𝐴𝑦𝐵 𝜑 ∧ ∃!𝑦𝐵 ∃!𝑥𝐴 𝜑) ↔ (∃!𝑥𝐴𝑦𝐵 𝜑 ∧ ∃!𝑦𝐵𝑥𝐴 𝜑))
3 nfcv 2907 . . . . 5 𝑥𝐵
4 nfreu1 3300 . . . . 5 𝑥∃!𝑥𝐴 𝜑
53, 4nfreuw 3305 . . . 4 𝑥∃!𝑦𝐵 ∃!𝑥𝐴 𝜑
65reuan 3829 . . 3 (∃!𝑥𝐴 (∃!𝑦𝐵 ∃!𝑥𝐴 𝜑 ∧ ∃𝑦𝐵 𝜑) ↔ (∃!𝑦𝐵 ∃!𝑥𝐴 𝜑 ∧ ∃!𝑥𝐴𝑦𝐵 𝜑))
7 ancom 461 . . . . . 6 ((∃!𝑥𝐴 𝜑 ∧ ∃𝑦𝐵 𝜑) ↔ (∃𝑦𝐵 𝜑 ∧ ∃!𝑥𝐴 𝜑))
87reubii 3325 . . . . 5 (∃!𝑦𝐵 (∃!𝑥𝐴 𝜑 ∧ ∃𝑦𝐵 𝜑) ↔ ∃!𝑦𝐵 (∃𝑦𝐵 𝜑 ∧ ∃!𝑥𝐴 𝜑))
9 nfre1 3239 . . . . . 6 𝑦𝑦𝐵 𝜑
109reuan 3829 . . . . 5 (∃!𝑦𝐵 (∃𝑦𝐵 𝜑 ∧ ∃!𝑥𝐴 𝜑) ↔ (∃𝑦𝐵 𝜑 ∧ ∃!𝑦𝐵 ∃!𝑥𝐴 𝜑))
11 ancom 461 . . . . 5 ((∃𝑦𝐵 𝜑 ∧ ∃!𝑦𝐵 ∃!𝑥𝐴 𝜑) ↔ (∃!𝑦𝐵 ∃!𝑥𝐴 𝜑 ∧ ∃𝑦𝐵 𝜑))
128, 10, 113bitri 297 . . . 4 (∃!𝑦𝐵 (∃!𝑥𝐴 𝜑 ∧ ∃𝑦𝐵 𝜑) ↔ (∃!𝑦𝐵 ∃!𝑥𝐴 𝜑 ∧ ∃𝑦𝐵 𝜑))
1312reubii 3325 . . 3 (∃!𝑥𝐴 ∃!𝑦𝐵 (∃!𝑥𝐴 𝜑 ∧ ∃𝑦𝐵 𝜑) ↔ ∃!𝑥𝐴 (∃!𝑦𝐵 ∃!𝑥𝐴 𝜑 ∧ ∃𝑦𝐵 𝜑))
14 ancom 461 . . 3 ((∃!𝑥𝐴𝑦𝐵 𝜑 ∧ ∃!𝑦𝐵 ∃!𝑥𝐴 𝜑) ↔ (∃!𝑦𝐵 ∃!𝑥𝐴 𝜑 ∧ ∃!𝑥𝐴𝑦𝐵 𝜑))
156, 13, 143bitr4ri 304 . 2 ((∃!𝑥𝐴𝑦𝐵 𝜑 ∧ ∃!𝑦𝐵 ∃!𝑥𝐴 𝜑) ↔ ∃!𝑥𝐴 ∃!𝑦𝐵 (∃!𝑥𝐴 𝜑 ∧ ∃𝑦𝐵 𝜑))
16 2reu7 44603 . 2 ((∃!𝑥𝐴𝑦𝐵 𝜑 ∧ ∃!𝑦𝐵𝑥𝐴 𝜑) ↔ ∃!𝑥𝐴 ∃!𝑦𝐵 (∃𝑥𝐴 𝜑 ∧ ∃𝑦𝐵 𝜑))
172, 15, 163bitr3ri 302 1 (∃!𝑥𝐴 ∃!𝑦𝐵 (∃𝑥𝐴 𝜑 ∧ ∃𝑦𝐵 𝜑) ↔ ∃!𝑥𝐴 ∃!𝑦𝐵 (∃!𝑥𝐴 𝜑 ∧ ∃𝑦𝐵 𝜑))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396  wrex 3065  ∃!wreu 3066
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-10 2137  ax-11 2154  ax-12 2171
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-ex 1783  df-nf 1787  df-mo 2540  df-eu 2569  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator