MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfsbcdw Structured version   Visualization version   GIF version

Theorem nfsbcdw 3758
Description: Deduction version of nfsbcw 3759. Version of nfsbcd 3761 with a disjoint variable condition, which does not require ax-13 2374. (Contributed by NM, 23-Nov-2005.) Avoid ax-13 2374. (Revised by GG, 10-Jan-2024.)
Hypotheses
Ref Expression
nfsbcdw.1 𝑦𝜑
nfsbcdw.2 (𝜑𝑥𝐴)
nfsbcdw.3 (𝜑 → Ⅎ𝑥𝜓)
Assertion
Ref Expression
nfsbcdw (𝜑 → Ⅎ𝑥[𝐴 / 𝑦]𝜓)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)   𝐴(𝑥,𝑦)

Proof of Theorem nfsbcdw
StepHypRef Expression
1 df-sbc 3738 . 2 ([𝐴 / 𝑦]𝜓𝐴 ∈ {𝑦𝜓})
2 nfsbcdw.2 . . 3 (𝜑𝑥𝐴)
3 nfsbcdw.1 . . . 4 𝑦𝜑
4 nfsbcdw.3 . . . 4 (𝜑 → Ⅎ𝑥𝜓)
53, 4nfabdw 2917 . . 3 (𝜑𝑥{𝑦𝜓})
62, 5nfeld 2907 . 2 (𝜑 → Ⅎ𝑥 𝐴 ∈ {𝑦𝜓})
71, 6nfxfrd 1855 1 (𝜑 → Ⅎ𝑥[𝐴 / 𝑦]𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wnf 1784  wcel 2113  {cab 2711  wnfc 2880  [wsbc 3737
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-sbc 3738
This theorem is referenced by:  nfsbcw  3759  nfcsbw  3872  sbcnestgfw  4370
  Copyright terms: Public domain W3C validator