| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfsbcdw | Structured version Visualization version GIF version | ||
| Description: Deduction version of nfsbcw 3758. Version of nfsbcd 3760 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by NM, 23-Nov-2005.) Avoid ax-13 2372. (Revised by GG, 10-Jan-2024.) |
| Ref | Expression |
|---|---|
| nfsbcdw.1 | ⊢ Ⅎ𝑦𝜑 |
| nfsbcdw.2 | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
| nfsbcdw.3 | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
| Ref | Expression |
|---|---|
| nfsbcdw | ⊢ (𝜑 → Ⅎ𝑥[𝐴 / 𝑦]𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-sbc 3737 | . 2 ⊢ ([𝐴 / 𝑦]𝜓 ↔ 𝐴 ∈ {𝑦 ∣ 𝜓}) | |
| 2 | nfsbcdw.2 | . . 3 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
| 3 | nfsbcdw.1 | . . . 4 ⊢ Ⅎ𝑦𝜑 | |
| 4 | nfsbcdw.3 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
| 5 | 3, 4 | nfabdw 2916 | . . 3 ⊢ (𝜑 → Ⅎ𝑥{𝑦 ∣ 𝜓}) |
| 6 | 2, 5 | nfeld 2906 | . 2 ⊢ (𝜑 → Ⅎ𝑥 𝐴 ∈ {𝑦 ∣ 𝜓}) |
| 7 | 1, 6 | nfxfrd 1855 | 1 ⊢ (𝜑 → Ⅎ𝑥[𝐴 / 𝑦]𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 Ⅎwnf 1784 ∈ wcel 2111 {cab 2709 Ⅎwnfc 2879 [wsbc 3736 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-sbc 3737 |
| This theorem is referenced by: nfsbcw 3758 nfcsbw 3871 sbcnestgfw 4366 |
| Copyright terms: Public domain | W3C validator |