MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfsbcdw Structured version   Visualization version   GIF version

Theorem nfsbcdw 3812
Description: Deduction version of nfsbcw 3813. Version of nfsbcd 3815 with a disjoint variable condition, which does not require ax-13 2375. (Contributed by NM, 23-Nov-2005.) Avoid ax-13 2375. (Revised by GG, 10-Jan-2024.)
Hypotheses
Ref Expression
nfsbcdw.1 𝑦𝜑
nfsbcdw.2 (𝜑𝑥𝐴)
nfsbcdw.3 (𝜑 → Ⅎ𝑥𝜓)
Assertion
Ref Expression
nfsbcdw (𝜑 → Ⅎ𝑥[𝐴 / 𝑦]𝜓)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)   𝐴(𝑥,𝑦)

Proof of Theorem nfsbcdw
StepHypRef Expression
1 df-sbc 3792 . 2 ([𝐴 / 𝑦]𝜓𝐴 ∈ {𝑦𝜓})
2 nfsbcdw.2 . . 3 (𝜑𝑥𝐴)
3 nfsbcdw.1 . . . 4 𝑦𝜑
4 nfsbcdw.3 . . . 4 (𝜑 → Ⅎ𝑥𝜓)
53, 4nfabdw 2925 . . 3 (𝜑𝑥{𝑦𝜓})
62, 5nfeld 2915 . 2 (𝜑 → Ⅎ𝑥 𝐴 ∈ {𝑦𝜓})
71, 6nfxfrd 1851 1 (𝜑 → Ⅎ𝑥[𝐴 / 𝑦]𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wnf 1780  wcel 2106  {cab 2712  wnfc 2888  [wsbc 3791
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ex 1777  df-nf 1781  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-sbc 3792
This theorem is referenced by:  nfsbcw  3813  nfcsbw  3935  sbcnestgfw  4427
  Copyright terms: Public domain W3C validator