![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfsbcdw | Structured version Visualization version GIF version |
Description: Deduction version of nfsbcw 3799. Version of nfsbcd 3801 with a disjoint variable condition, which does not require ax-13 2370. (Contributed by NM, 23-Nov-2005.) Avoid ax-13 2370. (Revised by Gino Giotto, 10-Jan-2024.) |
Ref | Expression |
---|---|
nfsbcdw.1 | ⊢ Ⅎ𝑦𝜑 |
nfsbcdw.2 | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
nfsbcdw.3 | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
Ref | Expression |
---|---|
nfsbcdw | ⊢ (𝜑 → Ⅎ𝑥[𝐴 / 𝑦]𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-sbc 3778 | . 2 ⊢ ([𝐴 / 𝑦]𝜓 ↔ 𝐴 ∈ {𝑦 ∣ 𝜓}) | |
2 | nfsbcdw.2 | . . 3 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
3 | nfsbcdw.1 | . . . 4 ⊢ Ⅎ𝑦𝜑 | |
4 | nfsbcdw.3 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
5 | 3, 4 | nfabdw 2925 | . . 3 ⊢ (𝜑 → Ⅎ𝑥{𝑦 ∣ 𝜓}) |
6 | 2, 5 | nfeld 2913 | . 2 ⊢ (𝜑 → Ⅎ𝑥 𝐴 ∈ {𝑦 ∣ 𝜓}) |
7 | 1, 6 | nfxfrd 1855 | 1 ⊢ (𝜑 → Ⅎ𝑥[𝐴 / 𝑦]𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 Ⅎwnf 1784 ∈ wcel 2105 {cab 2708 Ⅎwnfc 2882 [wsbc 3777 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-ex 1781 df-nf 1785 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-sbc 3778 |
This theorem is referenced by: nfsbcw 3799 nfcsbw 3920 sbcnestgfw 4418 |
Copyright terms: Public domain | W3C validator |