| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfsbcdw | Structured version Visualization version GIF version | ||
| Description: Deduction version of nfsbcw 3792. Version of nfsbcd 3794 with a disjoint variable condition, which does not require ax-13 2377. (Contributed by NM, 23-Nov-2005.) Avoid ax-13 2377. (Revised by GG, 10-Jan-2024.) |
| Ref | Expression |
|---|---|
| nfsbcdw.1 | ⊢ Ⅎ𝑦𝜑 |
| nfsbcdw.2 | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
| nfsbcdw.3 | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
| Ref | Expression |
|---|---|
| nfsbcdw | ⊢ (𝜑 → Ⅎ𝑥[𝐴 / 𝑦]𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-sbc 3771 | . 2 ⊢ ([𝐴 / 𝑦]𝜓 ↔ 𝐴 ∈ {𝑦 ∣ 𝜓}) | |
| 2 | nfsbcdw.2 | . . 3 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
| 3 | nfsbcdw.1 | . . . 4 ⊢ Ⅎ𝑦𝜑 | |
| 4 | nfsbcdw.3 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
| 5 | 3, 4 | nfabdw 2921 | . . 3 ⊢ (𝜑 → Ⅎ𝑥{𝑦 ∣ 𝜓}) |
| 6 | 2, 5 | nfeld 2911 | . 2 ⊢ (𝜑 → Ⅎ𝑥 𝐴 ∈ {𝑦 ∣ 𝜓}) |
| 7 | 1, 6 | nfxfrd 1854 | 1 ⊢ (𝜑 → Ⅎ𝑥[𝐴 / 𝑦]𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 Ⅎwnf 1783 ∈ wcel 2109 {cab 2714 Ⅎwnfc 2884 [wsbc 3770 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-sbc 3771 |
| This theorem is referenced by: nfsbcw 3792 nfcsbw 3905 sbcnestgfw 4401 |
| Copyright terms: Public domain | W3C validator |