MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcnestgfw Structured version   Visualization version   GIF version

Theorem sbcnestgfw 4358
Description: Nest the composition of two substitutions. Version of sbcnestgf 4363 with a disjoint variable condition, which does not require ax-13 2370. (Contributed by Mario Carneiro, 11-Nov-2016.) (Revised by Gino Giotto, 26-Jan-2024.)
Assertion
Ref Expression
sbcnestgfw ((𝐴𝑉 ∧ ∀𝑦𝑥𝜑) → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑[𝐴 / 𝑥𝐵 / 𝑦]𝜑))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem sbcnestgfw
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 dfsbcq 3723 . . . . 5 (𝑧 = 𝐴 → ([𝑧 / 𝑥][𝐵 / 𝑦]𝜑[𝐴 / 𝑥][𝐵 / 𝑦]𝜑))
2 csbeq1 3840 . . . . . 6 (𝑧 = 𝐴𝑧 / 𝑥𝐵 = 𝐴 / 𝑥𝐵)
32sbceq1d 3726 . . . . 5 (𝑧 = 𝐴 → ([𝑧 / 𝑥𝐵 / 𝑦]𝜑[𝐴 / 𝑥𝐵 / 𝑦]𝜑))
41, 3bibi12d 346 . . . 4 (𝑧 = 𝐴 → (([𝑧 / 𝑥][𝐵 / 𝑦]𝜑[𝑧 / 𝑥𝐵 / 𝑦]𝜑) ↔ ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑[𝐴 / 𝑥𝐵 / 𝑦]𝜑)))
54imbi2d 341 . . 3 (𝑧 = 𝐴 → ((∀𝑦𝑥𝜑 → ([𝑧 / 𝑥][𝐵 / 𝑦]𝜑[𝑧 / 𝑥𝐵 / 𝑦]𝜑)) ↔ (∀𝑦𝑥𝜑 → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑[𝐴 / 𝑥𝐵 / 𝑦]𝜑))))
6 vex 3441 . . . . 5 𝑧 ∈ V
76a1i 11 . . . 4 (∀𝑦𝑥𝜑𝑧 ∈ V)
8 csbeq1a 3851 . . . . . 6 (𝑥 = 𝑧𝐵 = 𝑧 / 𝑥𝐵)
98sbceq1d 3726 . . . . 5 (𝑥 = 𝑧 → ([𝐵 / 𝑦]𝜑[𝑧 / 𝑥𝐵 / 𝑦]𝜑))
109adantl 483 . . . 4 ((∀𝑦𝑥𝜑𝑥 = 𝑧) → ([𝐵 / 𝑦]𝜑[𝑧 / 𝑥𝐵 / 𝑦]𝜑))
11 nfnf1 2149 . . . . 5 𝑥𝑥𝜑
1211nfal 2315 . . . 4 𝑥𝑦𝑥𝜑
13 nfa1 2146 . . . . 5 𝑦𝑦𝑥𝜑
14 nfcsb1v 3862 . . . . . 6 𝑥𝑧 / 𝑥𝐵
1514a1i 11 . . . . 5 (∀𝑦𝑥𝜑𝑥𝑧 / 𝑥𝐵)
16 sp 2174 . . . . 5 (∀𝑦𝑥𝜑 → Ⅎ𝑥𝜑)
1713, 15, 16nfsbcdw 3742 . . . 4 (∀𝑦𝑥𝜑 → Ⅎ𝑥[𝑧 / 𝑥𝐵 / 𝑦]𝜑)
187, 10, 12, 17sbciedf 3765 . . 3 (∀𝑦𝑥𝜑 → ([𝑧 / 𝑥][𝐵 / 𝑦]𝜑[𝑧 / 𝑥𝐵 / 𝑦]𝜑))
195, 18vtoclg 3510 . 2 (𝐴𝑉 → (∀𝑦𝑥𝜑 → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑[𝐴 / 𝑥𝐵 / 𝑦]𝜑)))
2019imp 408 1 ((𝐴𝑉 ∧ ∀𝑦𝑥𝜑) → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑[𝐴 / 𝑥𝐵 / 𝑦]𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  wal 1537   = wceq 1539  wnf 1783  wcel 2104  wnfc 2885  Vcvv 3437  [wsbc 3721  csb 3837
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-v 3439  df-sbc 3722  df-csb 3838
This theorem is referenced by:  csbnestgfw  4359  sbcnestgw  4360
  Copyright terms: Public domain W3C validator