| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfsbcw | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for class substitution. Version of nfsbc 3763 with a disjoint variable condition, which does not require ax-13 2374. (Contributed by NM, 7-Sep-2014.) Avoid ax-13 2374. (Revised by GG, 10-Jan-2024.) |
| Ref | Expression |
|---|---|
| nfsbcw.1 | ⊢ Ⅎ𝑥𝐴 |
| nfsbcw.2 | ⊢ Ⅎ𝑥𝜑 |
| Ref | Expression |
|---|---|
| nfsbcw | ⊢ Ⅎ𝑥[𝐴 / 𝑦]𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nftru 1805 | . . 3 ⊢ Ⅎ𝑦⊤ | |
| 2 | nfsbcw.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 3 | 2 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐴) |
| 4 | nfsbcw.2 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 5 | 4 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝜑) |
| 6 | 1, 3, 5 | nfsbcdw 3759 | . 2 ⊢ (⊤ → Ⅎ𝑥[𝐴 / 𝑦]𝜑) |
| 7 | 6 | mptru 1548 | 1 ⊢ Ⅎ𝑥[𝐴 / 𝑦]𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: ⊤wtru 1542 Ⅎwnf 1784 Ⅎwnfc 2881 [wsbc 3738 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-sbc 3739 |
| This theorem is referenced by: opelopabgf 5485 opelopabf 5490 ralrnmptw 7036 elovmporab 7601 elovmporab1w 7602 ovmpt3rabdm 7614 elovmpt3rab1 7615 dfopab2 7993 dfoprab3s 7994 ralxpes 8075 ralxp3es 8078 frpoins3xpg 8079 frpoins3xp3g 8080 mpoxopoveq 8158 elmptrab 23752 bnj1445 35067 bnj1446 35068 bnj1467 35077 indexa 37783 sdclem1 37793 sbcalf 38164 sbcexf 38165 sbccomieg 42900 rexrabdioph 42901 or2expropbilem2 47147 or2expropbi 47148 ich2exprop 47585 ichnreuop 47586 reuopreuprim 47640 |
| Copyright terms: Public domain | W3C validator |