Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfsbcw | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for class substitution. Version of nfsbc 3736 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by NM, 7-Sep-2014.) (Revised by Gino Giotto, 10-Jan-2024.) |
Ref | Expression |
---|---|
nfsbcw.1 | ⊢ Ⅎ𝑥𝐴 |
nfsbcw.2 | ⊢ Ⅎ𝑥𝜑 |
Ref | Expression |
---|---|
nfsbcw | ⊢ Ⅎ𝑥[𝐴 / 𝑦]𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nftru 1808 | . . 3 ⊢ Ⅎ𝑦⊤ | |
2 | nfsbcw.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
3 | 2 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐴) |
4 | nfsbcw.2 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
5 | 4 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝜑) |
6 | 1, 3, 5 | nfsbcdw 3732 | . 2 ⊢ (⊤ → Ⅎ𝑥[𝐴 / 𝑦]𝜑) |
7 | 6 | mptru 1546 | 1 ⊢ Ⅎ𝑥[𝐴 / 𝑦]𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ⊤wtru 1540 Ⅎwnf 1787 Ⅎwnfc 2886 [wsbc 3711 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-sbc 3712 |
This theorem is referenced by: opelopabgf 5446 opelopabf 5451 ralrnmptw 6952 elovmporab 7493 elovmporab1w 7494 ovmpt3rabdm 7506 elovmpt3rab1 7507 dfopab2 7865 dfoprab3s 7866 mpoxopoveq 8006 elmptrab 22886 bnj1445 32924 bnj1446 32925 bnj1467 32934 ralxpes 33581 ralxp3es 33591 frpoins3xpg 33714 frpoins3xp3g 33715 indexa 35818 sdclem1 35828 sbcalf 36199 sbcexf 36200 sbccomieg 40531 rexrabdioph 40532 or2expropbilem2 44414 or2expropbi 44415 ich2exprop 44811 ichnreuop 44812 reuopreuprim 44866 |
Copyright terms: Public domain | W3C validator |