Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfsbcw | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for class substitution. Version of nfsbc 3744 with a disjoint variable condition, which does not require ax-13 2373. (Contributed by NM, 7-Sep-2014.) (Revised by Gino Giotto, 10-Jan-2024.) |
Ref | Expression |
---|---|
nfsbcw.1 | ⊢ Ⅎ𝑥𝐴 |
nfsbcw.2 | ⊢ Ⅎ𝑥𝜑 |
Ref | Expression |
---|---|
nfsbcw | ⊢ Ⅎ𝑥[𝐴 / 𝑦]𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nftru 1810 | . . 3 ⊢ Ⅎ𝑦⊤ | |
2 | nfsbcw.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
3 | 2 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐴) |
4 | nfsbcw.2 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
5 | 4 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝜑) |
6 | 1, 3, 5 | nfsbcdw 3740 | . 2 ⊢ (⊤ → Ⅎ𝑥[𝐴 / 𝑦]𝜑) |
7 | 6 | mptru 1548 | 1 ⊢ Ⅎ𝑥[𝐴 / 𝑦]𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ⊤wtru 1542 Ⅎwnf 1789 Ⅎwnfc 2888 [wsbc 3719 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1544 df-ex 1786 df-nf 1790 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-sbc 3720 |
This theorem is referenced by: opelopabgf 5454 opelopabf 5459 ralrnmptw 6964 elovmporab 7506 elovmporab1w 7507 ovmpt3rabdm 7519 elovmpt3rab1 7520 dfopab2 7878 dfoprab3s 7879 mpoxopoveq 8019 elmptrab 22959 bnj1445 33003 bnj1446 33004 bnj1467 33013 ralxpes 33657 ralxp3es 33667 frpoins3xpg 33766 frpoins3xp3g 33767 indexa 35870 sdclem1 35880 sbcalf 36251 sbcexf 36252 sbccomieg 40595 rexrabdioph 40596 or2expropbilem2 44478 or2expropbi 44479 ich2exprop 44875 ichnreuop 44876 reuopreuprim 44930 |
Copyright terms: Public domain | W3C validator |