| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfsbcw | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for class substitution. Version of nfsbc 3764 with a disjoint variable condition, which does not require ax-13 2371. (Contributed by NM, 7-Sep-2014.) Avoid ax-13 2371. (Revised by GG, 10-Jan-2024.) |
| Ref | Expression |
|---|---|
| nfsbcw.1 | ⊢ Ⅎ𝑥𝐴 |
| nfsbcw.2 | ⊢ Ⅎ𝑥𝜑 |
| Ref | Expression |
|---|---|
| nfsbcw | ⊢ Ⅎ𝑥[𝐴 / 𝑦]𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nftru 1805 | . . 3 ⊢ Ⅎ𝑦⊤ | |
| 2 | nfsbcw.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 3 | 2 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐴) |
| 4 | nfsbcw.2 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 5 | 4 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝜑) |
| 6 | 1, 3, 5 | nfsbcdw 3760 | . 2 ⊢ (⊤ → Ⅎ𝑥[𝐴 / 𝑦]𝜑) |
| 7 | 6 | mptru 1548 | 1 ⊢ Ⅎ𝑥[𝐴 / 𝑦]𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: ⊤wtru 1542 Ⅎwnf 1784 Ⅎwnfc 2877 [wsbc 3739 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 df-sb 2067 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-sbc 3740 |
| This theorem is referenced by: opelopabgf 5478 opelopabf 5483 ralrnmptw 7022 elovmporab 7587 elovmporab1w 7588 ovmpt3rabdm 7600 elovmpt3rab1 7601 dfopab2 7979 dfoprab3s 7980 ralxpes 8061 ralxp3es 8064 frpoins3xpg 8065 frpoins3xp3g 8066 mpoxopoveq 8144 elmptrab 23735 bnj1445 35046 bnj1446 35047 bnj1467 35056 indexa 37752 sdclem1 37762 sbcalf 38133 sbcexf 38134 sbccomieg 42805 rexrabdioph 42806 or2expropbilem2 47043 or2expropbi 47044 ich2exprop 47481 ichnreuop 47482 reuopreuprim 47536 |
| Copyright terms: Public domain | W3C validator |