| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfsbcw | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for class substitution. Version of nfsbc 3790 with a disjoint variable condition, which does not require ax-13 2376. (Contributed by NM, 7-Sep-2014.) Avoid ax-13 2376. (Revised by GG, 10-Jan-2024.) |
| Ref | Expression |
|---|---|
| nfsbcw.1 | ⊢ Ⅎ𝑥𝐴 |
| nfsbcw.2 | ⊢ Ⅎ𝑥𝜑 |
| Ref | Expression |
|---|---|
| nfsbcw | ⊢ Ⅎ𝑥[𝐴 / 𝑦]𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nftru 1804 | . . 3 ⊢ Ⅎ𝑦⊤ | |
| 2 | nfsbcw.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 3 | 2 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐴) |
| 4 | nfsbcw.2 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 5 | 4 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝜑) |
| 6 | 1, 3, 5 | nfsbcdw 3786 | . 2 ⊢ (⊤ → Ⅎ𝑥[𝐴 / 𝑦]𝜑) |
| 7 | 6 | mptru 1547 | 1 ⊢ Ⅎ𝑥[𝐴 / 𝑦]𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: ⊤wtru 1541 Ⅎwnf 1783 Ⅎwnfc 2883 [wsbc 3765 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-sbc 3766 |
| This theorem is referenced by: opelopabgf 5515 opelopabf 5520 ralrnmptw 7084 elovmporab 7653 elovmporab1w 7654 ovmpt3rabdm 7666 elovmpt3rab1 7667 dfopab2 8051 dfoprab3s 8052 ralxpes 8135 ralxp3es 8138 frpoins3xpg 8139 frpoins3xp3g 8140 mpoxopoveq 8218 elmptrab 23765 bnj1445 35075 bnj1446 35076 bnj1467 35085 indexa 37757 sdclem1 37767 sbcalf 38138 sbcexf 38139 sbccomieg 42816 rexrabdioph 42817 or2expropbilem2 47062 or2expropbi 47063 ich2exprop 47485 ichnreuop 47486 reuopreuprim 47540 |
| Copyright terms: Public domain | W3C validator |