![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfsbcw | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for class substitution. Version of nfsbc 3799 with a disjoint variable condition, which does not require ax-13 2366. (Contributed by NM, 7-Sep-2014.) Avoid ax-13 2366. (Revised by Gino Giotto, 10-Jan-2024.) |
Ref | Expression |
---|---|
nfsbcw.1 | ⊢ Ⅎ𝑥𝐴 |
nfsbcw.2 | ⊢ Ⅎ𝑥𝜑 |
Ref | Expression |
---|---|
nfsbcw | ⊢ Ⅎ𝑥[𝐴 / 𝑦]𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nftru 1799 | . . 3 ⊢ Ⅎ𝑦⊤ | |
2 | nfsbcw.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
3 | 2 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐴) |
4 | nfsbcw.2 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
5 | 4 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝜑) |
6 | 1, 3, 5 | nfsbcdw 3795 | . 2 ⊢ (⊤ → Ⅎ𝑥[𝐴 / 𝑦]𝜑) |
7 | 6 | mptru 1541 | 1 ⊢ Ⅎ𝑥[𝐴 / 𝑦]𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ⊤wtru 1535 Ⅎwnf 1778 Ⅎwnfc 2878 [wsbc 3774 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-tru 1537 df-ex 1775 df-nf 1779 df-sb 2061 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-sbc 3775 |
This theorem is referenced by: opelopabgf 5536 opelopabf 5541 ralrnmptw 7098 elovmporab 7661 elovmporab1w 7662 ovmpt3rabdm 7674 elovmpt3rab1 7675 dfopab2 8050 dfoprab3s 8051 ralxpes 8135 ralxp3es 8138 frpoins3xpg 8139 frpoins3xp3g 8140 mpoxopoveq 8218 elmptrab 23718 bnj1445 34611 bnj1446 34612 bnj1467 34621 indexa 37141 sdclem1 37151 sbcalf 37522 sbcexf 37523 sbccomieg 42135 rexrabdioph 42136 or2expropbilem2 46338 or2expropbi 46339 ich2exprop 46734 ichnreuop 46735 reuopreuprim 46789 |
Copyright terms: Public domain | W3C validator |