![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfsbcw | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for class substitution. Version of nfsbc 3803 with a disjoint variable condition, which does not require ax-13 2369. (Contributed by NM, 7-Sep-2014.) Avoid ax-13 2369. (Revised by Gino Giotto, 10-Jan-2024.) |
Ref | Expression |
---|---|
nfsbcw.1 | ⊢ Ⅎ𝑥𝐴 |
nfsbcw.2 | ⊢ Ⅎ𝑥𝜑 |
Ref | Expression |
---|---|
nfsbcw | ⊢ Ⅎ𝑥[𝐴 / 𝑦]𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nftru 1804 | . . 3 ⊢ Ⅎ𝑦⊤ | |
2 | nfsbcw.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
3 | 2 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐴) |
4 | nfsbcw.2 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
5 | 4 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝜑) |
6 | 1, 3, 5 | nfsbcdw 3799 | . 2 ⊢ (⊤ → Ⅎ𝑥[𝐴 / 𝑦]𝜑) |
7 | 6 | mptru 1546 | 1 ⊢ Ⅎ𝑥[𝐴 / 𝑦]𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ⊤wtru 1540 Ⅎwnf 1783 Ⅎwnfc 2881 [wsbc 3778 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-tru 1542 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-sbc 3779 |
This theorem is referenced by: opelopabgf 5541 opelopabf 5546 ralrnmptw 7096 elovmporab 7656 elovmporab1w 7657 ovmpt3rabdm 7669 elovmpt3rab1 7670 dfopab2 8042 dfoprab3s 8043 ralxpes 8126 ralxp3es 8129 frpoins3xpg 8130 frpoins3xp3g 8131 mpoxopoveq 8208 elmptrab 23553 bnj1445 34351 bnj1446 34352 bnj1467 34361 indexa 36906 sdclem1 36916 sbcalf 37287 sbcexf 37288 sbccomieg 41835 rexrabdioph 41836 or2expropbilem2 46043 or2expropbi 46044 ich2exprop 46439 ichnreuop 46440 reuopreuprim 46494 |
Copyright terms: Public domain | W3C validator |