![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfsbcw | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for class substitution. Version of nfsbc 3815 with a disjoint variable condition, which does not require ax-13 2374. (Contributed by NM, 7-Sep-2014.) Avoid ax-13 2374. (Revised by GG, 10-Jan-2024.) |
Ref | Expression |
---|---|
nfsbcw.1 | ⊢ Ⅎ𝑥𝐴 |
nfsbcw.2 | ⊢ Ⅎ𝑥𝜑 |
Ref | Expression |
---|---|
nfsbcw | ⊢ Ⅎ𝑥[𝐴 / 𝑦]𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nftru 1800 | . . 3 ⊢ Ⅎ𝑦⊤ | |
2 | nfsbcw.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
3 | 2 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐴) |
4 | nfsbcw.2 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
5 | 4 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝜑) |
6 | 1, 3, 5 | nfsbcdw 3811 | . 2 ⊢ (⊤ → Ⅎ𝑥[𝐴 / 𝑦]𝜑) |
7 | 6 | mptru 1543 | 1 ⊢ Ⅎ𝑥[𝐴 / 𝑦]𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ⊤wtru 1537 Ⅎwnf 1779 Ⅎwnfc 2887 [wsbc 3790 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1539 df-ex 1776 df-nf 1780 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-sbc 3791 |
This theorem is referenced by: opelopabgf 5549 opelopabf 5554 ralrnmptw 7113 elovmporab 7678 elovmporab1w 7679 ovmpt3rabdm 7691 elovmpt3rab1 7692 dfopab2 8075 dfoprab3s 8076 ralxpes 8159 ralxp3es 8162 frpoins3xpg 8163 frpoins3xp3g 8164 mpoxopoveq 8242 elmptrab 23850 bnj1445 35036 bnj1446 35037 bnj1467 35046 indexa 37719 sdclem1 37729 sbcalf 38100 sbcexf 38101 sbccomieg 42780 rexrabdioph 42781 or2expropbilem2 46982 or2expropbi 46983 ich2exprop 47395 ichnreuop 47396 reuopreuprim 47450 |
Copyright terms: Public domain | W3C validator |