![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfsbcw | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for class substitution. Version of nfsbc 3799 with a disjoint variable condition, which does not require ax-13 2365. (Contributed by NM, 7-Sep-2014.) Avoid ax-13 2365. (Revised by Gino Giotto, 10-Jan-2024.) |
Ref | Expression |
---|---|
nfsbcw.1 | ⊢ Ⅎ𝑥𝐴 |
nfsbcw.2 | ⊢ Ⅎ𝑥𝜑 |
Ref | Expression |
---|---|
nfsbcw | ⊢ Ⅎ𝑥[𝐴 / 𝑦]𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nftru 1798 | . . 3 ⊢ Ⅎ𝑦⊤ | |
2 | nfsbcw.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
3 | 2 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐴) |
4 | nfsbcw.2 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
5 | 4 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝜑) |
6 | 1, 3, 5 | nfsbcdw 3795 | . 2 ⊢ (⊤ → Ⅎ𝑥[𝐴 / 𝑦]𝜑) |
7 | 6 | mptru 1540 | 1 ⊢ Ⅎ𝑥[𝐴 / 𝑦]𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ⊤wtru 1534 Ⅎwnf 1777 Ⅎwnfc 2875 [wsbc 3774 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-tru 1536 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-sbc 3775 |
This theorem is referenced by: opelopabgf 5541 opelopabf 5546 ralrnmptw 7101 elovmporab 7665 elovmporab1w 7666 ovmpt3rabdm 7678 elovmpt3rab1 7679 dfopab2 8055 dfoprab3s 8056 ralxpes 8139 ralxp3es 8142 frpoins3xpg 8143 frpoins3xp3g 8144 mpoxopoveq 8223 elmptrab 23761 bnj1445 34745 bnj1446 34746 bnj1467 34755 indexa 37276 sdclem1 37286 sbcalf 37657 sbcexf 37658 sbccomieg 42278 rexrabdioph 42279 or2expropbilem2 46478 or2expropbi 46479 ich2exprop 46874 ichnreuop 46875 reuopreuprim 46929 |
Copyright terms: Public domain | W3C validator |