| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfsbcw | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for class substitution. Version of nfsbc 3778 with a disjoint variable condition, which does not require ax-13 2370. (Contributed by NM, 7-Sep-2014.) Avoid ax-13 2370. (Revised by GG, 10-Jan-2024.) |
| Ref | Expression |
|---|---|
| nfsbcw.1 | ⊢ Ⅎ𝑥𝐴 |
| nfsbcw.2 | ⊢ Ⅎ𝑥𝜑 |
| Ref | Expression |
|---|---|
| nfsbcw | ⊢ Ⅎ𝑥[𝐴 / 𝑦]𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nftru 1804 | . . 3 ⊢ Ⅎ𝑦⊤ | |
| 2 | nfsbcw.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 3 | 2 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐴) |
| 4 | nfsbcw.2 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 5 | 4 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝜑) |
| 6 | 1, 3, 5 | nfsbcdw 3774 | . 2 ⊢ (⊤ → Ⅎ𝑥[𝐴 / 𝑦]𝜑) |
| 7 | 6 | mptru 1547 | 1 ⊢ Ⅎ𝑥[𝐴 / 𝑦]𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: ⊤wtru 1541 Ⅎwnf 1783 Ⅎwnfc 2876 [wsbc 3753 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-sbc 3754 |
| This theorem is referenced by: opelopabgf 5500 opelopabf 5505 ralrnmptw 7066 elovmporab 7635 elovmporab1w 7636 ovmpt3rabdm 7648 elovmpt3rab1 7649 dfopab2 8031 dfoprab3s 8032 ralxpes 8115 ralxp3es 8118 frpoins3xpg 8119 frpoins3xp3g 8120 mpoxopoveq 8198 elmptrab 23714 bnj1445 35034 bnj1446 35035 bnj1467 35044 indexa 37727 sdclem1 37737 sbcalf 38108 sbcexf 38109 sbccomieg 42781 rexrabdioph 42782 or2expropbilem2 47034 or2expropbi 47035 ich2exprop 47472 ichnreuop 47473 reuopreuprim 47527 |
| Copyright terms: Public domain | W3C validator |