| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > necon4ad | Structured version Visualization version GIF version | ||
| Description: Contrapositive inference for inequality. (Contributed by NM, 2-Apr-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 23-Nov-2019.) |
| Ref | Expression |
|---|---|
| necon4ad.1 | ⊢ (𝜑 → (𝐴 ≠ 𝐵 → ¬ 𝜓)) |
| Ref | Expression |
|---|---|
| necon4ad | ⊢ (𝜑 → (𝜓 → 𝐴 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | notnot 142 | . 2 ⊢ (𝜓 → ¬ ¬ 𝜓) | |
| 2 | necon4ad.1 | . . 3 ⊢ (𝜑 → (𝐴 ≠ 𝐵 → ¬ 𝜓)) | |
| 3 | 2 | necon1bd 2944 | . 2 ⊢ (𝜑 → (¬ ¬ 𝜓 → 𝐴 = 𝐵)) |
| 4 | 1, 3 | syl5 34 | 1 ⊢ (𝜑 → (𝜓 → 𝐴 = 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ≠ wne 2926 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2927 |
| This theorem is referenced by: necon1d 2948 fisseneq 9211 f1finf1o 9223 f1finf1oOLD 9224 dfac5 10089 isf32lem9 10321 fpwwe2 10603 qextlt 13170 qextle 13171 xsubge0 13228 hashf1 14429 climuni 15525 rpnnen2lem12 16200 fzo0dvdseq 16300 4sqlem11 16933 haust1 23246 deg1lt0 26003 ply1divmo 26048 ig1peu 26087 dgrlt 26179 quotcan 26224 fta 26997 atcv0eq 32315 erdszelem9 35193 poimirlem23 37644 poimir 37654 lshpdisj 38987 lsatcv0eq 39047 exatleN 39405 atcvr0eq 39427 cdlemg31c 40700 sn-itrere 42483 sn-retire 42484 jm2.19 42989 jm2.26lem3 42997 dgraa0p 43145 |
| Copyright terms: Public domain | W3C validator |