| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > necon4ad | Structured version Visualization version GIF version | ||
| Description: Contrapositive inference for inequality. (Contributed by NM, 2-Apr-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 23-Nov-2019.) |
| Ref | Expression |
|---|---|
| necon4ad.1 | ⊢ (𝜑 → (𝐴 ≠ 𝐵 → ¬ 𝜓)) |
| Ref | Expression |
|---|---|
| necon4ad | ⊢ (𝜑 → (𝜓 → 𝐴 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | notnot 142 | . 2 ⊢ (𝜓 → ¬ ¬ 𝜓) | |
| 2 | necon4ad.1 | . . 3 ⊢ (𝜑 → (𝐴 ≠ 𝐵 → ¬ 𝜓)) | |
| 3 | 2 | necon1bd 2946 | . 2 ⊢ (𝜑 → (¬ ¬ 𝜓 → 𝐴 = 𝐵)) |
| 4 | 1, 3 | syl5 34 | 1 ⊢ (𝜑 → (𝜓 → 𝐴 = 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ≠ wne 2928 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2929 |
| This theorem is referenced by: necon1d 2950 fisseneq 9147 f1finf1o 9157 dfac5 10017 isf32lem9 10249 fpwwe2 10531 qextlt 13099 qextle 13100 xsubge0 13157 hashf1 14361 climuni 15456 rpnnen2lem12 16131 fzo0dvdseq 16231 4sqlem11 16864 haust1 23265 deg1lt0 26021 ply1divmo 26066 ig1peu 26105 dgrlt 26197 quotcan 26242 fta 27015 atcv0eq 32354 erdszelem9 35231 poimirlem23 37682 poimir 37692 lshpdisj 39025 lsatcv0eq 39085 exatleN 39442 atcvr0eq 39464 cdlemg31c 40737 sn-itrere 42520 sn-retire 42521 jm2.19 43025 jm2.26lem3 43033 dgraa0p 43181 |
| Copyright terms: Public domain | W3C validator |