![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > necon4ad | Structured version Visualization version GIF version |
Description: Contrapositive inference for inequality. (Contributed by NM, 2-Apr-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 23-Nov-2019.) |
Ref | Expression |
---|---|
necon4ad.1 | ⊢ (𝜑 → (𝐴 ≠ 𝐵 → ¬ 𝜓)) |
Ref | Expression |
---|---|
necon4ad | ⊢ (𝜑 → (𝜓 → 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | notnot 142 | . 2 ⊢ (𝜓 → ¬ ¬ 𝜓) | |
2 | necon4ad.1 | . . 3 ⊢ (𝜑 → (𝐴 ≠ 𝐵 → ¬ 𝜓)) | |
3 | 2 | necon1bd 2964 | . 2 ⊢ (𝜑 → (¬ ¬ 𝜓 → 𝐴 = 𝐵)) |
4 | 1, 3 | syl5 34 | 1 ⊢ (𝜑 → (𝜓 → 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1537 ≠ wne 2946 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-ne 2947 |
This theorem is referenced by: necon1d 2968 fisseneq 9320 f1finf1o 9333 f1finf1oOLD 9334 dfac5 10198 isf32lem9 10430 fpwwe2 10712 qextlt 13265 qextle 13266 xsubge0 13323 hashf1 14506 climuni 15598 rpnnen2lem12 16273 fzo0dvdseq 16371 4sqlem11 17002 haust1 23381 deg1lt0 26150 ply1divmo 26195 ig1peu 26234 dgrlt 26326 quotcan 26369 fta 27141 atcv0eq 32411 erdszelem9 35167 poimirlem23 37603 poimir 37613 lshpdisj 38943 lsatcv0eq 39003 exatleN 39361 atcvr0eq 39383 cdlemg31c 40656 itrere 42307 sn-itrere 42444 sn-retire 42445 jm2.19 42950 jm2.26lem3 42958 dgraa0p 43106 |
Copyright terms: Public domain | W3C validator |