MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  necon4ad Structured version   Visualization version   GIF version

Theorem necon4ad 2962
Description: Contrapositive inference for inequality. (Contributed by NM, 2-Apr-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 23-Nov-2019.)
Hypothesis
Ref Expression
necon4ad.1 (𝜑 → (𝐴𝐵 → ¬ 𝜓))
Assertion
Ref Expression
necon4ad (𝜑 → (𝜓𝐴 = 𝐵))

Proof of Theorem necon4ad
StepHypRef Expression
1 notnot 142 . 2 (𝜓 → ¬ ¬ 𝜓)
2 necon4ad.1 . . 3 (𝜑 → (𝐴𝐵 → ¬ 𝜓))
32necon1bd 2961 . 2 (𝜑 → (¬ ¬ 𝜓𝐴 = 𝐵))
41, 3syl5 34 1 (𝜑 → (𝜓𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1539  wne 2943
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-ne 2944
This theorem is referenced by:  necon1d  2965  fisseneq  9034  f1finf1o  9046  dfac5  9884  isf32lem9  10117  fpwwe2  10399  qextlt  12937  qextle  12938  xsubge0  12995  hashf1  14171  climuni  15261  rpnnen2lem12  15934  fzo0dvdseq  16032  4sqlem11  16656  haust1  22503  deg1lt0  25256  ply1divmo  25300  ig1peu  25336  dgrlt  25427  quotcan  25469  fta  26229  atcv0eq  30741  erdszelem9  33161  poimirlem23  35800  poimir  35810  lshpdisj  37001  lsatcv0eq  37061  exatleN  37418  atcvr0eq  37440  cdlemg31c  38713  itrere  40436  retire  40437  jm2.19  40815  jm2.26lem3  40823  dgraa0p  40974
  Copyright terms: Public domain W3C validator