| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > necon4ad | Structured version Visualization version GIF version | ||
| Description: Contrapositive inference for inequality. (Contributed by NM, 2-Apr-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 23-Nov-2019.) |
| Ref | Expression |
|---|---|
| necon4ad.1 | ⊢ (𝜑 → (𝐴 ≠ 𝐵 → ¬ 𝜓)) |
| Ref | Expression |
|---|---|
| necon4ad | ⊢ (𝜑 → (𝜓 → 𝐴 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | notnot 142 | . 2 ⊢ (𝜓 → ¬ ¬ 𝜓) | |
| 2 | necon4ad.1 | . . 3 ⊢ (𝜑 → (𝐴 ≠ 𝐵 → ¬ 𝜓)) | |
| 3 | 2 | necon1bd 2943 | . 2 ⊢ (𝜑 → (¬ ¬ 𝜓 → 𝐴 = 𝐵)) |
| 4 | 1, 3 | syl5 34 | 1 ⊢ (𝜑 → (𝜓 → 𝐴 = 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ≠ wne 2925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2926 |
| This theorem is referenced by: necon1d 2947 fisseneq 9162 f1finf1o 9174 f1finf1oOLD 9175 dfac5 10042 isf32lem9 10274 fpwwe2 10556 qextlt 13123 qextle 13124 xsubge0 13181 hashf1 14382 climuni 15477 rpnnen2lem12 16152 fzo0dvdseq 16252 4sqlem11 16885 haust1 23255 deg1lt0 26012 ply1divmo 26057 ig1peu 26096 dgrlt 26188 quotcan 26233 fta 27006 atcv0eq 32341 erdszelem9 35171 poimirlem23 37622 poimir 37632 lshpdisj 38965 lsatcv0eq 39025 exatleN 39383 atcvr0eq 39405 cdlemg31c 40678 sn-itrere 42461 sn-retire 42462 jm2.19 42966 jm2.26lem3 42974 dgraa0p 43122 |
| Copyright terms: Public domain | W3C validator |