![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > necon4ad | Structured version Visualization version GIF version |
Description: Contrapositive inference for inequality. (Contributed by NM, 2-Apr-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 23-Nov-2019.) |
Ref | Expression |
---|---|
necon4ad.1 | ⊢ (𝜑 → (𝐴 ≠ 𝐵 → ¬ 𝜓)) |
Ref | Expression |
---|---|
necon4ad | ⊢ (𝜑 → (𝜓 → 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | notnot 142 | . 2 ⊢ (𝜓 → ¬ ¬ 𝜓) | |
2 | necon4ad.1 | . . 3 ⊢ (𝜑 → (𝐴 ≠ 𝐵 → ¬ 𝜓)) | |
3 | 2 | necon1bd 2956 | . 2 ⊢ (𝜑 → (¬ ¬ 𝜓 → 𝐴 = 𝐵)) |
4 | 1, 3 | syl5 34 | 1 ⊢ (𝜑 → (𝜓 → 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1537 ≠ wne 2938 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-ne 2939 |
This theorem is referenced by: necon1d 2960 fisseneq 9291 f1finf1o 9303 f1finf1oOLD 9304 dfac5 10167 isf32lem9 10399 fpwwe2 10681 qextlt 13242 qextle 13243 xsubge0 13300 hashf1 14493 climuni 15585 rpnnen2lem12 16258 fzo0dvdseq 16357 4sqlem11 16989 haust1 23376 deg1lt0 26145 ply1divmo 26190 ig1peu 26229 dgrlt 26321 quotcan 26366 fta 27138 atcv0eq 32408 erdszelem9 35184 poimirlem23 37630 poimir 37640 lshpdisj 38969 lsatcv0eq 39029 exatleN 39387 atcvr0eq 39409 cdlemg31c 40682 itrere 42332 sn-itrere 42475 sn-retire 42476 jm2.19 42982 jm2.26lem3 42990 dgraa0p 43138 |
Copyright terms: Public domain | W3C validator |