| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > necon4ad | Structured version Visualization version GIF version | ||
| Description: Contrapositive inference for inequality. (Contributed by NM, 2-Apr-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 23-Nov-2019.) |
| Ref | Expression |
|---|---|
| necon4ad.1 | ⊢ (𝜑 → (𝐴 ≠ 𝐵 → ¬ 𝜓)) |
| Ref | Expression |
|---|---|
| necon4ad | ⊢ (𝜑 → (𝜓 → 𝐴 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | notnot 142 | . 2 ⊢ (𝜓 → ¬ ¬ 𝜓) | |
| 2 | necon4ad.1 | . . 3 ⊢ (𝜑 → (𝐴 ≠ 𝐵 → ¬ 𝜓)) | |
| 3 | 2 | necon1bd 2947 | . 2 ⊢ (𝜑 → (¬ ¬ 𝜓 → 𝐴 = 𝐵)) |
| 4 | 1, 3 | syl5 34 | 1 ⊢ (𝜑 → (𝜓 → 𝐴 = 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ≠ wne 2929 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2930 |
| This theorem is referenced by: necon1d 2951 fisseneq 9154 f1finf1o 9164 dfac5 10027 isf32lem9 10259 fpwwe2 10541 qextlt 13104 qextle 13105 xsubge0 13162 hashf1 14366 climuni 15461 rpnnen2lem12 16136 fzo0dvdseq 16236 4sqlem11 16869 haust1 23268 deg1lt0 26024 ply1divmo 26069 ig1peu 26108 dgrlt 26200 quotcan 26245 fta 27018 atcv0eq 32361 erdszelem9 35264 poimirlem23 37703 poimir 37713 lshpdisj 39106 lsatcv0eq 39166 exatleN 39523 atcvr0eq 39545 cdlemg31c 40818 sn-itrere 42606 sn-retire 42607 jm2.19 43110 jm2.26lem3 43118 dgraa0p 43266 |
| Copyright terms: Public domain | W3C validator |