MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  necon4ad Structured version   Visualization version   GIF version

Theorem necon4ad 2944
Description: Contrapositive inference for inequality. (Contributed by NM, 2-Apr-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 23-Nov-2019.)
Hypothesis
Ref Expression
necon4ad.1 (𝜑 → (𝐴𝐵 → ¬ 𝜓))
Assertion
Ref Expression
necon4ad (𝜑 → (𝜓𝐴 = 𝐵))

Proof of Theorem necon4ad
StepHypRef Expression
1 notnot 142 . 2 (𝜓 → ¬ ¬ 𝜓)
2 necon4ad.1 . . 3 (𝜑 → (𝐴𝐵 → ¬ 𝜓))
32necon1bd 2943 . 2 (𝜑 → (¬ ¬ 𝜓𝐴 = 𝐵))
41, 3syl5 34 1 (𝜑 → (𝜓𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  wne 2925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-ne 2926
This theorem is referenced by:  necon1d  2947  fisseneq  9204  f1finf1o  9216  f1finf1oOLD  9217  dfac5  10082  isf32lem9  10314  fpwwe2  10596  qextlt  13163  qextle  13164  xsubge0  13221  hashf1  14422  climuni  15518  rpnnen2lem12  16193  fzo0dvdseq  16293  4sqlem11  16926  haust1  23239  deg1lt0  25996  ply1divmo  26041  ig1peu  26080  dgrlt  26172  quotcan  26217  fta  26990  atcv0eq  32308  erdszelem9  35186  poimirlem23  37637  poimir  37647  lshpdisj  38980  lsatcv0eq  39040  exatleN  39398  atcvr0eq  39420  cdlemg31c  40693  sn-itrere  42476  sn-retire  42477  jm2.19  42982  jm2.26lem3  42990  dgraa0p  43138
  Copyright terms: Public domain W3C validator