![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > necon4ad | Structured version Visualization version GIF version |
Description: Contrapositive inference for inequality. (Contributed by NM, 2-Apr-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 23-Nov-2019.) |
Ref | Expression |
---|---|
necon4ad.1 | ⊢ (𝜑 → (𝐴 ≠ 𝐵 → ¬ 𝜓)) |
Ref | Expression |
---|---|
necon4ad | ⊢ (𝜑 → (𝜓 → 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | notnot 142 | . 2 ⊢ (𝜓 → ¬ ¬ 𝜓) | |
2 | necon4ad.1 | . . 3 ⊢ (𝜑 → (𝐴 ≠ 𝐵 → ¬ 𝜓)) | |
3 | 2 | necon1bd 2958 | . 2 ⊢ (𝜑 → (¬ ¬ 𝜓 → 𝐴 = 𝐵)) |
4 | 1, 3 | syl5 34 | 1 ⊢ (𝜑 → (𝜓 → 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ≠ wne 2940 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-ne 2941 |
This theorem is referenced by: necon1d 2962 fisseneq 9259 f1finf1o 9273 f1finf1oOLD 9274 dfac5 10125 isf32lem9 10358 fpwwe2 10640 qextlt 13184 qextle 13185 xsubge0 13242 hashf1 14420 climuni 15498 rpnnen2lem12 16170 fzo0dvdseq 16268 4sqlem11 16890 haust1 22863 deg1lt0 25616 ply1divmo 25660 ig1peu 25696 dgrlt 25787 quotcan 25829 fta 26591 atcv0eq 31670 erdszelem9 34259 poimirlem23 36597 poimir 36607 lshpdisj 37943 lsatcv0eq 38003 exatleN 38361 atcvr0eq 38383 cdlemg31c 39656 itrere 41421 retire 41422 jm2.19 41814 jm2.26lem3 41822 dgraa0p 41973 |
Copyright terms: Public domain | W3C validator |