Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > necon4ad | Structured version Visualization version GIF version |
Description: Contrapositive inference for inequality. (Contributed by NM, 2-Apr-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 23-Nov-2019.) |
Ref | Expression |
---|---|
necon4ad.1 | ⊢ (𝜑 → (𝐴 ≠ 𝐵 → ¬ 𝜓)) |
Ref | Expression |
---|---|
necon4ad | ⊢ (𝜑 → (𝜓 → 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | notnot 142 | . 2 ⊢ (𝜓 → ¬ ¬ 𝜓) | |
2 | necon4ad.1 | . . 3 ⊢ (𝜑 → (𝐴 ≠ 𝐵 → ¬ 𝜓)) | |
3 | 2 | necon1bd 2960 | . 2 ⊢ (𝜑 → (¬ ¬ 𝜓 → 𝐴 = 𝐵)) |
4 | 1, 3 | syl5 34 | 1 ⊢ (𝜑 → (𝜓 → 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1539 ≠ wne 2942 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-ne 2943 |
This theorem is referenced by: necon1d 2964 fisseneq 8963 f1finf1o 8975 dfac5 9815 isf32lem9 10048 fpwwe2 10330 qextlt 12866 qextle 12867 xsubge0 12924 hashf1 14099 climuni 15189 rpnnen2lem12 15862 fzo0dvdseq 15960 4sqlem11 16584 haust1 22411 deg1lt0 25161 ply1divmo 25205 ig1peu 25241 dgrlt 25332 quotcan 25374 fta 26134 atcv0eq 30642 erdszelem9 33061 poimirlem23 35727 poimir 35737 lshpdisj 36928 lsatcv0eq 36988 exatleN 37345 atcvr0eq 37367 cdlemg31c 38640 itrere 40357 retire 40358 jm2.19 40731 jm2.26lem3 40739 dgraa0p 40890 |
Copyright terms: Public domain | W3C validator |