![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > necon4ad | Structured version Visualization version GIF version |
Description: Contrapositive inference for inequality. (Contributed by NM, 2-Apr-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 23-Nov-2019.) |
Ref | Expression |
---|---|
necon4ad.1 | ⊢ (𝜑 → (𝐴 ≠ 𝐵 → ¬ 𝜓)) |
Ref | Expression |
---|---|
necon4ad | ⊢ (𝜑 → (𝜓 → 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | notnot 142 | . 2 ⊢ (𝜓 → ¬ ¬ 𝜓) | |
2 | necon4ad.1 | . . 3 ⊢ (𝜑 → (𝐴 ≠ 𝐵 → ¬ 𝜓)) | |
3 | 2 | necon1bd 2958 | . 2 ⊢ (𝜑 → (¬ ¬ 𝜓 → 𝐴 = 𝐵)) |
4 | 1, 3 | syl5 34 | 1 ⊢ (𝜑 → (𝜓 → 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ≠ wne 2940 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-ne 2941 |
This theorem is referenced by: necon1d 2962 fisseneq 9256 f1finf1o 9270 f1finf1oOLD 9271 dfac5 10122 isf32lem9 10355 fpwwe2 10637 qextlt 13181 qextle 13182 xsubge0 13239 hashf1 14417 climuni 15495 rpnnen2lem12 16167 fzo0dvdseq 16265 4sqlem11 16887 haust1 22855 deg1lt0 25608 ply1divmo 25652 ig1peu 25688 dgrlt 25779 quotcan 25821 fta 26581 atcv0eq 31627 erdszelem9 34185 poimirlem23 36506 poimir 36516 lshpdisj 37852 lsatcv0eq 37912 exatleN 38270 atcvr0eq 38292 cdlemg31c 39565 itrere 41340 retire 41341 jm2.19 41722 jm2.26lem3 41730 dgraa0p 41881 |
Copyright terms: Public domain | W3C validator |