Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > necon4ad | Structured version Visualization version GIF version |
Description: Contrapositive inference for inequality. (Contributed by NM, 2-Apr-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 23-Nov-2019.) |
Ref | Expression |
---|---|
necon4ad.1 | ⊢ (𝜑 → (𝐴 ≠ 𝐵 → ¬ 𝜓)) |
Ref | Expression |
---|---|
necon4ad | ⊢ (𝜑 → (𝜓 → 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | notnot 144 | . 2 ⊢ (𝜓 → ¬ ¬ 𝜓) | |
2 | necon4ad.1 | . . 3 ⊢ (𝜑 → (𝐴 ≠ 𝐵 → ¬ 𝜓)) | |
3 | 2 | necon1bd 2970 | . 2 ⊢ (𝜑 → (¬ ¬ 𝜓 → 𝐴 = 𝐵)) |
4 | 1, 3 | syl5 34 | 1 ⊢ (𝜑 → (𝜓 → 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1539 ≠ wne 2952 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-ne 2953 |
This theorem is referenced by: necon1d 2974 fisseneq 8781 f1finf1o 8796 dfac5 9602 isf32lem9 9835 fpwwe2 10117 qextlt 12651 qextle 12652 xsubge0 12709 hashf1 13881 climuni 14971 rpnnen2lem12 15640 fzo0dvdseq 15738 4sqlem11 16361 haust1 22067 deg1lt0 24806 ply1divmo 24850 ig1peu 24886 dgrlt 24977 quotcan 25019 fta 25779 atcv0eq 30276 erdszelem9 32691 poimirlem23 35396 poimir 35406 lshpdisj 36599 lsatcv0eq 36659 exatleN 37016 atcvr0eq 37038 cdlemg31c 38311 itrere 39979 retire 39980 jm2.19 40353 jm2.26lem3 40361 dgraa0p 40512 |
Copyright terms: Public domain | W3C validator |