| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > necon4ad | Structured version Visualization version GIF version | ||
| Description: Contrapositive inference for inequality. (Contributed by NM, 2-Apr-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 23-Nov-2019.) |
| Ref | Expression |
|---|---|
| necon4ad.1 | ⊢ (𝜑 → (𝐴 ≠ 𝐵 → ¬ 𝜓)) |
| Ref | Expression |
|---|---|
| necon4ad | ⊢ (𝜑 → (𝜓 → 𝐴 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | notnot 142 | . 2 ⊢ (𝜓 → ¬ ¬ 𝜓) | |
| 2 | necon4ad.1 | . . 3 ⊢ (𝜑 → (𝐴 ≠ 𝐵 → ¬ 𝜓)) | |
| 3 | 2 | necon1bd 2951 | . 2 ⊢ (𝜑 → (¬ ¬ 𝜓 → 𝐴 = 𝐵)) |
| 4 | 1, 3 | syl5 34 | 1 ⊢ (𝜑 → (𝜓 → 𝐴 = 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ≠ wne 2933 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2934 |
| This theorem is referenced by: necon1d 2955 fisseneq 9270 f1finf1o 9282 f1finf1oOLD 9283 dfac5 10148 isf32lem9 10380 fpwwe2 10662 qextlt 13224 qextle 13225 xsubge0 13282 hashf1 14480 climuni 15573 rpnnen2lem12 16248 fzo0dvdseq 16347 4sqlem11 16980 haust1 23295 deg1lt0 26053 ply1divmo 26098 ig1peu 26137 dgrlt 26229 quotcan 26274 fta 27047 atcv0eq 32365 erdszelem9 35226 poimirlem23 37672 poimir 37682 lshpdisj 39010 lsatcv0eq 39070 exatleN 39428 atcvr0eq 39450 cdlemg31c 40723 itrere 42334 sn-itrere 42478 sn-retire 42479 jm2.19 42984 jm2.26lem3 42992 dgraa0p 43140 |
| Copyright terms: Public domain | W3C validator |