Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > necon4ad | Structured version Visualization version GIF version |
Description: Contrapositive inference for inequality. (Contributed by NM, 2-Apr-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 23-Nov-2019.) |
Ref | Expression |
---|---|
necon4ad.1 | ⊢ (𝜑 → (𝐴 ≠ 𝐵 → ¬ 𝜓)) |
Ref | Expression |
---|---|
necon4ad | ⊢ (𝜑 → (𝜓 → 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | notnot 142 | . 2 ⊢ (𝜓 → ¬ ¬ 𝜓) | |
2 | necon4ad.1 | . . 3 ⊢ (𝜑 → (𝐴 ≠ 𝐵 → ¬ 𝜓)) | |
3 | 2 | necon1bd 2961 | . 2 ⊢ (𝜑 → (¬ ¬ 𝜓 → 𝐴 = 𝐵)) |
4 | 1, 3 | syl5 34 | 1 ⊢ (𝜑 → (𝜓 → 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1539 ≠ wne 2943 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-ne 2944 |
This theorem is referenced by: necon1d 2965 fisseneq 9034 f1finf1o 9046 dfac5 9884 isf32lem9 10117 fpwwe2 10399 qextlt 12937 qextle 12938 xsubge0 12995 hashf1 14171 climuni 15261 rpnnen2lem12 15934 fzo0dvdseq 16032 4sqlem11 16656 haust1 22503 deg1lt0 25256 ply1divmo 25300 ig1peu 25336 dgrlt 25427 quotcan 25469 fta 26229 atcv0eq 30741 erdszelem9 33161 poimirlem23 35800 poimir 35810 lshpdisj 37001 lsatcv0eq 37061 exatleN 37418 atcvr0eq 37440 cdlemg31c 38713 itrere 40436 retire 40437 jm2.19 40815 jm2.26lem3 40823 dgraa0p 40974 |
Copyright terms: Public domain | W3C validator |