| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > necon4ad | Structured version Visualization version GIF version | ||
| Description: Contrapositive inference for inequality. (Contributed by NM, 2-Apr-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 23-Nov-2019.) |
| Ref | Expression |
|---|---|
| necon4ad.1 | ⊢ (𝜑 → (𝐴 ≠ 𝐵 → ¬ 𝜓)) |
| Ref | Expression |
|---|---|
| necon4ad | ⊢ (𝜑 → (𝜓 → 𝐴 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | notnot 142 | . 2 ⊢ (𝜓 → ¬ ¬ 𝜓) | |
| 2 | necon4ad.1 | . . 3 ⊢ (𝜑 → (𝐴 ≠ 𝐵 → ¬ 𝜓)) | |
| 3 | 2 | necon1bd 2943 | . 2 ⊢ (𝜑 → (¬ ¬ 𝜓 → 𝐴 = 𝐵)) |
| 4 | 1, 3 | syl5 34 | 1 ⊢ (𝜑 → (𝜓 → 𝐴 = 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ≠ wne 2925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2926 |
| This theorem is referenced by: necon1d 2947 fisseneq 9204 f1finf1o 9216 f1finf1oOLD 9217 dfac5 10082 isf32lem9 10314 fpwwe2 10596 qextlt 13163 qextle 13164 xsubge0 13221 hashf1 14422 climuni 15518 rpnnen2lem12 16193 fzo0dvdseq 16293 4sqlem11 16926 haust1 23239 deg1lt0 25996 ply1divmo 26041 ig1peu 26080 dgrlt 26172 quotcan 26217 fta 26990 atcv0eq 32308 erdszelem9 35186 poimirlem23 37637 poimir 37647 lshpdisj 38980 lsatcv0eq 39040 exatleN 39398 atcvr0eq 39420 cdlemg31c 40693 sn-itrere 42476 sn-retire 42477 jm2.19 42982 jm2.26lem3 42990 dgraa0p 43138 |
| Copyright terms: Public domain | W3C validator |