Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  knoppndvlem10 Structured version   Visualization version   GIF version

Theorem knoppndvlem10 33094
Description: Lemma for knoppndv 33107. (Contributed by Asger C. Ipsen, 15-Jun-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.)
Hypotheses
Ref Expression
knoppndvlem10.t 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
knoppndvlem10.f 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
knoppndvlem10.a 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)
knoppndvlem10.b 𝐵 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑀 + 1))
knoppndvlem10.c (𝜑𝐶 ∈ (-1(,)1))
knoppndvlem10.j (𝜑𝐽 ∈ ℕ0)
knoppndvlem10.m (𝜑𝑀 ∈ ℤ)
knoppndvlem10.n (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
knoppndvlem10 (𝜑 → (abs‘(((𝐹𝐵)‘𝐽) − ((𝐹𝐴)‘𝐽))) = (((abs‘𝐶)↑𝐽) / 2))
Distinct variable groups:   𝐴,𝑛,𝑦   𝑥,𝐴   𝐵,𝑛,𝑦   𝑥,𝐵   𝐶,𝑛,𝑦   𝑛,𝐽   𝑥,𝐽   𝑛,𝑀,𝑦   𝑥,𝑀   𝑛,𝑁,𝑦   𝑥,𝑁   𝑇,𝑛,𝑦   𝜑,𝑛,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥)   𝑇(𝑥)   𝐹(𝑥,𝑦,𝑛)   𝐽(𝑦)

Proof of Theorem knoppndvlem10
StepHypRef Expression
1 knoppndvlem10.t . . . . . . 7 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
2 knoppndvlem10.f . . . . . . 7 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
3 knoppndvlem10.b . . . . . . 7 𝐵 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑀 + 1))
4 knoppndvlem10.c . . . . . . . 8 (𝜑𝐶 ∈ (-1(,)1))
54adantr 474 . . . . . . 7 ((𝜑 ∧ 2 ∥ 𝑀) → 𝐶 ∈ (-1(,)1))
6 knoppndvlem10.j . . . . . . . 8 (𝜑𝐽 ∈ ℕ0)
76adantr 474 . . . . . . 7 ((𝜑 ∧ 2 ∥ 𝑀) → 𝐽 ∈ ℕ0)
8 knoppndvlem10.m . . . . . . . . 9 (𝜑𝑀 ∈ ℤ)
98peano2zd 11837 . . . . . . . 8 (𝜑 → (𝑀 + 1) ∈ ℤ)
109adantr 474 . . . . . . 7 ((𝜑 ∧ 2 ∥ 𝑀) → (𝑀 + 1) ∈ ℤ)
11 knoppndvlem10.n . . . . . . . 8 (𝜑𝑁 ∈ ℕ)
1211adantr 474 . . . . . . 7 ((𝜑 ∧ 2 ∥ 𝑀) → 𝑁 ∈ ℕ)
13 notnot 139 . . . . . . . . 9 (2 ∥ 𝑀 → ¬ ¬ 2 ∥ 𝑀)
1413adantl 475 . . . . . . . 8 ((𝜑 ∧ 2 ∥ 𝑀) → ¬ ¬ 2 ∥ 𝑀)
158adantr 474 . . . . . . . . 9 ((𝜑 ∧ 2 ∥ 𝑀) → 𝑀 ∈ ℤ)
16 oddp1even 15472 . . . . . . . . 9 (𝑀 ∈ ℤ → (¬ 2 ∥ 𝑀 ↔ 2 ∥ (𝑀 + 1)))
1715, 16syl 17 . . . . . . . 8 ((𝜑 ∧ 2 ∥ 𝑀) → (¬ 2 ∥ 𝑀 ↔ 2 ∥ (𝑀 + 1)))
1814, 17mtbid 316 . . . . . . 7 ((𝜑 ∧ 2 ∥ 𝑀) → ¬ 2 ∥ (𝑀 + 1))
191, 2, 3, 5, 7, 10, 12, 18knoppndvlem9 33093 . . . . . 6 ((𝜑 ∧ 2 ∥ 𝑀) → ((𝐹𝐵)‘𝐽) = ((𝐶𝐽) / 2))
20 knoppndvlem10.a . . . . . . 7 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)
2114notnotrd 131 . . . . . . 7 ((𝜑 ∧ 2 ∥ 𝑀) → 2 ∥ 𝑀)
221, 2, 20, 5, 7, 15, 12, 21knoppndvlem8 33092 . . . . . 6 ((𝜑 ∧ 2 ∥ 𝑀) → ((𝐹𝐴)‘𝐽) = 0)
2319, 22oveq12d 6940 . . . . 5 ((𝜑 ∧ 2 ∥ 𝑀) → (((𝐹𝐵)‘𝐽) − ((𝐹𝐴)‘𝐽)) = (((𝐶𝐽) / 2) − 0))
244knoppndvlem3 33087 . . . . . . . . . . 11 (𝜑 → (𝐶 ∈ ℝ ∧ (abs‘𝐶) < 1))
2524simpld 490 . . . . . . . . . 10 (𝜑𝐶 ∈ ℝ)
2625recnd 10405 . . . . . . . . 9 (𝜑𝐶 ∈ ℂ)
2726, 6expcld 13327 . . . . . . . 8 (𝜑 → (𝐶𝐽) ∈ ℂ)
28 2cnd 11453 . . . . . . . 8 (𝜑 → 2 ∈ ℂ)
29 2ne0 11486 . . . . . . . . 9 2 ≠ 0
3029a1i 11 . . . . . . . 8 (𝜑 → 2 ≠ 0)
3127, 28, 30divcld 11151 . . . . . . 7 (𝜑 → ((𝐶𝐽) / 2) ∈ ℂ)
3231subid1d 10723 . . . . . 6 (𝜑 → (((𝐶𝐽) / 2) − 0) = ((𝐶𝐽) / 2))
3332adantr 474 . . . . 5 ((𝜑 ∧ 2 ∥ 𝑀) → (((𝐶𝐽) / 2) − 0) = ((𝐶𝐽) / 2))
3423, 33eqtrd 2813 . . . 4 ((𝜑 ∧ 2 ∥ 𝑀) → (((𝐹𝐵)‘𝐽) − ((𝐹𝐴)‘𝐽)) = ((𝐶𝐽) / 2))
3534fveq2d 6450 . . 3 ((𝜑 ∧ 2 ∥ 𝑀) → (abs‘(((𝐹𝐵)‘𝐽) − ((𝐹𝐴)‘𝐽))) = (abs‘((𝐶𝐽) / 2)))
363a1i 11 . . . . . . . . 9 (𝜑𝐵 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑀 + 1)))
376nn0zd 11832 . . . . . . . . . 10 (𝜑𝐽 ∈ ℤ)
3811, 37, 9knoppndvlem1 33085 . . . . . . . . 9 (𝜑 → ((((2 · 𝑁)↑-𝐽) / 2) · (𝑀 + 1)) ∈ ℝ)
3936, 38eqeltrd 2858 . . . . . . . 8 (𝜑𝐵 ∈ ℝ)
401, 2, 11, 25, 39, 6knoppcnlem3 33068 . . . . . . 7 (𝜑 → ((𝐹𝐵)‘𝐽) ∈ ℝ)
4140recnd 10405 . . . . . 6 (𝜑 → ((𝐹𝐵)‘𝐽) ∈ ℂ)
4220a1i 11 . . . . . . . . 9 (𝜑𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀))
4311, 37, 8knoppndvlem1 33085 . . . . . . . . 9 (𝜑 → ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀) ∈ ℝ)
4442, 43eqeltrd 2858 . . . . . . . 8 (𝜑𝐴 ∈ ℝ)
451, 2, 11, 25, 44, 6knoppcnlem3 33068 . . . . . . 7 (𝜑 → ((𝐹𝐴)‘𝐽) ∈ ℝ)
4645recnd 10405 . . . . . 6 (𝜑 → ((𝐹𝐴)‘𝐽) ∈ ℂ)
4741, 46abssubd 14600 . . . . 5 (𝜑 → (abs‘(((𝐹𝐵)‘𝐽) − ((𝐹𝐴)‘𝐽))) = (abs‘(((𝐹𝐴)‘𝐽) − ((𝐹𝐵)‘𝐽))))
4847adantr 474 . . . 4 ((𝜑 ∧ ¬ 2 ∥ 𝑀) → (abs‘(((𝐹𝐵)‘𝐽) − ((𝐹𝐴)‘𝐽))) = (abs‘(((𝐹𝐴)‘𝐽) − ((𝐹𝐵)‘𝐽))))
494adantr 474 . . . . . . . 8 ((𝜑 ∧ ¬ 2 ∥ 𝑀) → 𝐶 ∈ (-1(,)1))
506adantr 474 . . . . . . . 8 ((𝜑 ∧ ¬ 2 ∥ 𝑀) → 𝐽 ∈ ℕ0)
518adantr 474 . . . . . . . 8 ((𝜑 ∧ ¬ 2 ∥ 𝑀) → 𝑀 ∈ ℤ)
5211adantr 474 . . . . . . . 8 ((𝜑 ∧ ¬ 2 ∥ 𝑀) → 𝑁 ∈ ℕ)
53 simpr 479 . . . . . . . 8 ((𝜑 ∧ ¬ 2 ∥ 𝑀) → ¬ 2 ∥ 𝑀)
541, 2, 20, 49, 50, 51, 52, 53knoppndvlem9 33093 . . . . . . 7 ((𝜑 ∧ ¬ 2 ∥ 𝑀) → ((𝐹𝐴)‘𝐽) = ((𝐶𝐽) / 2))
559adantr 474 . . . . . . . 8 ((𝜑 ∧ ¬ 2 ∥ 𝑀) → (𝑀 + 1) ∈ ℤ)
5651, 16syl 17 . . . . . . . . 9 ((𝜑 ∧ ¬ 2 ∥ 𝑀) → (¬ 2 ∥ 𝑀 ↔ 2 ∥ (𝑀 + 1)))
5753, 56mpbid 224 . . . . . . . 8 ((𝜑 ∧ ¬ 2 ∥ 𝑀) → 2 ∥ (𝑀 + 1))
581, 2, 3, 49, 50, 55, 52, 57knoppndvlem8 33092 . . . . . . 7 ((𝜑 ∧ ¬ 2 ∥ 𝑀) → ((𝐹𝐵)‘𝐽) = 0)
5954, 58oveq12d 6940 . . . . . 6 ((𝜑 ∧ ¬ 2 ∥ 𝑀) → (((𝐹𝐴)‘𝐽) − ((𝐹𝐵)‘𝐽)) = (((𝐶𝐽) / 2) − 0))
6032adantr 474 . . . . . 6 ((𝜑 ∧ ¬ 2 ∥ 𝑀) → (((𝐶𝐽) / 2) − 0) = ((𝐶𝐽) / 2))
6159, 60eqtrd 2813 . . . . 5 ((𝜑 ∧ ¬ 2 ∥ 𝑀) → (((𝐹𝐴)‘𝐽) − ((𝐹𝐵)‘𝐽)) = ((𝐶𝐽) / 2))
6261fveq2d 6450 . . . 4 ((𝜑 ∧ ¬ 2 ∥ 𝑀) → (abs‘(((𝐹𝐴)‘𝐽) − ((𝐹𝐵)‘𝐽))) = (abs‘((𝐶𝐽) / 2)))
6348, 62eqtrd 2813 . . 3 ((𝜑 ∧ ¬ 2 ∥ 𝑀) → (abs‘(((𝐹𝐵)‘𝐽) − ((𝐹𝐴)‘𝐽))) = (abs‘((𝐶𝐽) / 2)))
6435, 63pm2.61dan 803 . 2 (𝜑 → (abs‘(((𝐹𝐵)‘𝐽) − ((𝐹𝐴)‘𝐽))) = (abs‘((𝐶𝐽) / 2)))
6527, 28, 30absdivd 14602 . . 3 (𝜑 → (abs‘((𝐶𝐽) / 2)) = ((abs‘(𝐶𝐽)) / (abs‘2)))
6626, 6absexpd 14599 . . . 4 (𝜑 → (abs‘(𝐶𝐽)) = ((abs‘𝐶)↑𝐽))
67 0le2 11484 . . . . . 6 0 ≤ 2
68 2re 11449 . . . . . . 7 2 ∈ ℝ
6968absidi 14524 . . . . . 6 (0 ≤ 2 → (abs‘2) = 2)
7067, 69ax-mp 5 . . . . 5 (abs‘2) = 2
7170a1i 11 . . . 4 (𝜑 → (abs‘2) = 2)
7266, 71oveq12d 6940 . . 3 (𝜑 → ((abs‘(𝐶𝐽)) / (abs‘2)) = (((abs‘𝐶)↑𝐽) / 2))
7365, 72eqtrd 2813 . 2 (𝜑 → (abs‘((𝐶𝐽) / 2)) = (((abs‘𝐶)↑𝐽) / 2))
7464, 73eqtrd 2813 1 (𝜑 → (abs‘(((𝐹𝐵)‘𝐽) − ((𝐹𝐴)‘𝐽))) = (((abs‘𝐶)↑𝐽) / 2))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 386   = wceq 1601  wcel 2106  wne 2968   class class class wbr 4886  cmpt 4965  cfv 6135  (class class class)co 6922  cr 10271  0cc0 10272  1c1 10273   + caddc 10275   · cmul 10277   < clt 10411  cle 10412  cmin 10606  -cneg 10607   / cdiv 11032  cn 11374  2c2 11430  0cn0 11642  cz 11728  (,)cioo 12487  cfl 12910  cexp 13178  abscabs 14381  cdvds 15387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-8 2108  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-13 2333  ax-ext 2753  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349  ax-pre-sup 10350
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2550  df-eu 2586  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-ne 2969  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3399  df-sbc 3652  df-csb 3751  df-dif 3794  df-un 3796  df-in 3798  df-ss 3805  df-pss 3807  df-nul 4141  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4672  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-om 7344  df-1st 7445  df-2nd 7446  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-er 8026  df-en 8242  df-dom 8243  df-sdom 8244  df-sup 8636  df-inf 8637  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-div 11033  df-nn 11375  df-2 11438  df-3 11439  df-n0 11643  df-z 11729  df-uz 11993  df-rp 12138  df-ioo 12491  df-ico 12493  df-fl 12912  df-seq 13120  df-exp 13179  df-cj 14246  df-re 14247  df-im 14248  df-sqrt 14382  df-abs 14383  df-dvds 15388
This theorem is referenced by:  knoppndvlem15  33099
  Copyright terms: Public domain W3C validator