Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  knoppndvlem10 Structured version   Visualization version   GIF version

Theorem knoppndvlem10 36487
Description: Lemma for knoppndv 36500. (Contributed by Asger C. Ipsen, 15-Jun-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.)
Hypotheses
Ref Expression
knoppndvlem10.t 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
knoppndvlem10.f 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
knoppndvlem10.a 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)
knoppndvlem10.b 𝐵 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑀 + 1))
knoppndvlem10.c (𝜑𝐶 ∈ (-1(,)1))
knoppndvlem10.j (𝜑𝐽 ∈ ℕ0)
knoppndvlem10.m (𝜑𝑀 ∈ ℤ)
knoppndvlem10.n (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
knoppndvlem10 (𝜑 → (abs‘(((𝐹𝐵)‘𝐽) − ((𝐹𝐴)‘𝐽))) = (((abs‘𝐶)↑𝐽) / 2))
Distinct variable groups:   𝐴,𝑛,𝑦   𝑥,𝐴   𝐵,𝑛,𝑦   𝑥,𝐵   𝐶,𝑛,𝑦   𝑛,𝐽   𝑥,𝐽   𝑛,𝑀,𝑦   𝑥,𝑀   𝑛,𝑁,𝑦   𝑥,𝑁   𝑇,𝑛,𝑦   𝜑,𝑛,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥)   𝑇(𝑥)   𝐹(𝑥,𝑦,𝑛)   𝐽(𝑦)

Proof of Theorem knoppndvlem10
StepHypRef Expression
1 knoppndvlem10.t . . . . . . 7 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
2 knoppndvlem10.f . . . . . . 7 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
3 knoppndvlem10.b . . . . . . 7 𝐵 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑀 + 1))
4 knoppndvlem10.c . . . . . . . 8 (𝜑𝐶 ∈ (-1(,)1))
54adantr 480 . . . . . . 7 ((𝜑 ∧ 2 ∥ 𝑀) → 𝐶 ∈ (-1(,)1))
6 knoppndvlem10.j . . . . . . . 8 (𝜑𝐽 ∈ ℕ0)
76adantr 480 . . . . . . 7 ((𝜑 ∧ 2 ∥ 𝑀) → 𝐽 ∈ ℕ0)
8 knoppndvlem10.m . . . . . . . . 9 (𝜑𝑀 ∈ ℤ)
98peano2zd 12750 . . . . . . . 8 (𝜑 → (𝑀 + 1) ∈ ℤ)
109adantr 480 . . . . . . 7 ((𝜑 ∧ 2 ∥ 𝑀) → (𝑀 + 1) ∈ ℤ)
11 knoppndvlem10.n . . . . . . . 8 (𝜑𝑁 ∈ ℕ)
1211adantr 480 . . . . . . 7 ((𝜑 ∧ 2 ∥ 𝑀) → 𝑁 ∈ ℕ)
13 notnot 142 . . . . . . . . 9 (2 ∥ 𝑀 → ¬ ¬ 2 ∥ 𝑀)
1413adantl 481 . . . . . . . 8 ((𝜑 ∧ 2 ∥ 𝑀) → ¬ ¬ 2 ∥ 𝑀)
158adantr 480 . . . . . . . . 9 ((𝜑 ∧ 2 ∥ 𝑀) → 𝑀 ∈ ℤ)
16 oddp1even 16392 . . . . . . . . 9 (𝑀 ∈ ℤ → (¬ 2 ∥ 𝑀 ↔ 2 ∥ (𝑀 + 1)))
1715, 16syl 17 . . . . . . . 8 ((𝜑 ∧ 2 ∥ 𝑀) → (¬ 2 ∥ 𝑀 ↔ 2 ∥ (𝑀 + 1)))
1814, 17mtbid 324 . . . . . . 7 ((𝜑 ∧ 2 ∥ 𝑀) → ¬ 2 ∥ (𝑀 + 1))
191, 2, 3, 5, 7, 10, 12, 18knoppndvlem9 36486 . . . . . 6 ((𝜑 ∧ 2 ∥ 𝑀) → ((𝐹𝐵)‘𝐽) = ((𝐶𝐽) / 2))
20 knoppndvlem10.a . . . . . . 7 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)
2114notnotrd 133 . . . . . . 7 ((𝜑 ∧ 2 ∥ 𝑀) → 2 ∥ 𝑀)
221, 2, 20, 5, 7, 15, 12, 21knoppndvlem8 36485 . . . . . 6 ((𝜑 ∧ 2 ∥ 𝑀) → ((𝐹𝐴)‘𝐽) = 0)
2319, 22oveq12d 7466 . . . . 5 ((𝜑 ∧ 2 ∥ 𝑀) → (((𝐹𝐵)‘𝐽) − ((𝐹𝐴)‘𝐽)) = (((𝐶𝐽) / 2) − 0))
244knoppndvlem3 36480 . . . . . . . . . . 11 (𝜑 → (𝐶 ∈ ℝ ∧ (abs‘𝐶) < 1))
2524simpld 494 . . . . . . . . . 10 (𝜑𝐶 ∈ ℝ)
2625recnd 11318 . . . . . . . . 9 (𝜑𝐶 ∈ ℂ)
2726, 6expcld 14196 . . . . . . . 8 (𝜑 → (𝐶𝐽) ∈ ℂ)
28 2cnd 12371 . . . . . . . 8 (𝜑 → 2 ∈ ℂ)
29 2ne0 12397 . . . . . . . . 9 2 ≠ 0
3029a1i 11 . . . . . . . 8 (𝜑 → 2 ≠ 0)
3127, 28, 30divcld 12070 . . . . . . 7 (𝜑 → ((𝐶𝐽) / 2) ∈ ℂ)
3231subid1d 11636 . . . . . 6 (𝜑 → (((𝐶𝐽) / 2) − 0) = ((𝐶𝐽) / 2))
3332adantr 480 . . . . 5 ((𝜑 ∧ 2 ∥ 𝑀) → (((𝐶𝐽) / 2) − 0) = ((𝐶𝐽) / 2))
3423, 33eqtrd 2780 . . . 4 ((𝜑 ∧ 2 ∥ 𝑀) → (((𝐹𝐵)‘𝐽) − ((𝐹𝐴)‘𝐽)) = ((𝐶𝐽) / 2))
3534fveq2d 6924 . . 3 ((𝜑 ∧ 2 ∥ 𝑀) → (abs‘(((𝐹𝐵)‘𝐽) − ((𝐹𝐴)‘𝐽))) = (abs‘((𝐶𝐽) / 2)))
363a1i 11 . . . . . . . . 9 (𝜑𝐵 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑀 + 1)))
376nn0zd 12665 . . . . . . . . . 10 (𝜑𝐽 ∈ ℤ)
3811, 37, 9knoppndvlem1 36478 . . . . . . . . 9 (𝜑 → ((((2 · 𝑁)↑-𝐽) / 2) · (𝑀 + 1)) ∈ ℝ)
3936, 38eqeltrd 2844 . . . . . . . 8 (𝜑𝐵 ∈ ℝ)
401, 2, 11, 25, 39, 6knoppcnlem3 36461 . . . . . . 7 (𝜑 → ((𝐹𝐵)‘𝐽) ∈ ℝ)
4140recnd 11318 . . . . . 6 (𝜑 → ((𝐹𝐵)‘𝐽) ∈ ℂ)
4220a1i 11 . . . . . . . . 9 (𝜑𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀))
4311, 37, 8knoppndvlem1 36478 . . . . . . . . 9 (𝜑 → ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀) ∈ ℝ)
4442, 43eqeltrd 2844 . . . . . . . 8 (𝜑𝐴 ∈ ℝ)
451, 2, 11, 25, 44, 6knoppcnlem3 36461 . . . . . . 7 (𝜑 → ((𝐹𝐴)‘𝐽) ∈ ℝ)
4645recnd 11318 . . . . . 6 (𝜑 → ((𝐹𝐴)‘𝐽) ∈ ℂ)
4741, 46abssubd 15502 . . . . 5 (𝜑 → (abs‘(((𝐹𝐵)‘𝐽) − ((𝐹𝐴)‘𝐽))) = (abs‘(((𝐹𝐴)‘𝐽) − ((𝐹𝐵)‘𝐽))))
4847adantr 480 . . . 4 ((𝜑 ∧ ¬ 2 ∥ 𝑀) → (abs‘(((𝐹𝐵)‘𝐽) − ((𝐹𝐴)‘𝐽))) = (abs‘(((𝐹𝐴)‘𝐽) − ((𝐹𝐵)‘𝐽))))
494adantr 480 . . . . . . . 8 ((𝜑 ∧ ¬ 2 ∥ 𝑀) → 𝐶 ∈ (-1(,)1))
506adantr 480 . . . . . . . 8 ((𝜑 ∧ ¬ 2 ∥ 𝑀) → 𝐽 ∈ ℕ0)
518adantr 480 . . . . . . . 8 ((𝜑 ∧ ¬ 2 ∥ 𝑀) → 𝑀 ∈ ℤ)
5211adantr 480 . . . . . . . 8 ((𝜑 ∧ ¬ 2 ∥ 𝑀) → 𝑁 ∈ ℕ)
53 simpr 484 . . . . . . . 8 ((𝜑 ∧ ¬ 2 ∥ 𝑀) → ¬ 2 ∥ 𝑀)
541, 2, 20, 49, 50, 51, 52, 53knoppndvlem9 36486 . . . . . . 7 ((𝜑 ∧ ¬ 2 ∥ 𝑀) → ((𝐹𝐴)‘𝐽) = ((𝐶𝐽) / 2))
559adantr 480 . . . . . . . 8 ((𝜑 ∧ ¬ 2 ∥ 𝑀) → (𝑀 + 1) ∈ ℤ)
5651, 16syl 17 . . . . . . . . 9 ((𝜑 ∧ ¬ 2 ∥ 𝑀) → (¬ 2 ∥ 𝑀 ↔ 2 ∥ (𝑀 + 1)))
5753, 56mpbid 232 . . . . . . . 8 ((𝜑 ∧ ¬ 2 ∥ 𝑀) → 2 ∥ (𝑀 + 1))
581, 2, 3, 49, 50, 55, 52, 57knoppndvlem8 36485 . . . . . . 7 ((𝜑 ∧ ¬ 2 ∥ 𝑀) → ((𝐹𝐵)‘𝐽) = 0)
5954, 58oveq12d 7466 . . . . . 6 ((𝜑 ∧ ¬ 2 ∥ 𝑀) → (((𝐹𝐴)‘𝐽) − ((𝐹𝐵)‘𝐽)) = (((𝐶𝐽) / 2) − 0))
6032adantr 480 . . . . . 6 ((𝜑 ∧ ¬ 2 ∥ 𝑀) → (((𝐶𝐽) / 2) − 0) = ((𝐶𝐽) / 2))
6159, 60eqtrd 2780 . . . . 5 ((𝜑 ∧ ¬ 2 ∥ 𝑀) → (((𝐹𝐴)‘𝐽) − ((𝐹𝐵)‘𝐽)) = ((𝐶𝐽) / 2))
6261fveq2d 6924 . . . 4 ((𝜑 ∧ ¬ 2 ∥ 𝑀) → (abs‘(((𝐹𝐴)‘𝐽) − ((𝐹𝐵)‘𝐽))) = (abs‘((𝐶𝐽) / 2)))
6348, 62eqtrd 2780 . . 3 ((𝜑 ∧ ¬ 2 ∥ 𝑀) → (abs‘(((𝐹𝐵)‘𝐽) − ((𝐹𝐴)‘𝐽))) = (abs‘((𝐶𝐽) / 2)))
6435, 63pm2.61dan 812 . 2 (𝜑 → (abs‘(((𝐹𝐵)‘𝐽) − ((𝐹𝐴)‘𝐽))) = (abs‘((𝐶𝐽) / 2)))
6527, 28, 30absdivd 15504 . . 3 (𝜑 → (abs‘((𝐶𝐽) / 2)) = ((abs‘(𝐶𝐽)) / (abs‘2)))
6626, 6absexpd 15501 . . . 4 (𝜑 → (abs‘(𝐶𝐽)) = ((abs‘𝐶)↑𝐽))
67 0le2 12395 . . . . . 6 0 ≤ 2
68 2re 12367 . . . . . . 7 2 ∈ ℝ
6968absidi 15426 . . . . . 6 (0 ≤ 2 → (abs‘2) = 2)
7067, 69ax-mp 5 . . . . 5 (abs‘2) = 2
7170a1i 11 . . . 4 (𝜑 → (abs‘2) = 2)
7266, 71oveq12d 7466 . . 3 (𝜑 → ((abs‘(𝐶𝐽)) / (abs‘2)) = (((abs‘𝐶)↑𝐽) / 2))
7365, 72eqtrd 2780 . 2 (𝜑 → (abs‘((𝐶𝐽) / 2)) = (((abs‘𝐶)↑𝐽) / 2))
7464, 73eqtrd 2780 1 (𝜑 → (abs‘(((𝐹𝐵)‘𝐽) − ((𝐹𝐴)‘𝐽))) = (((abs‘𝐶)↑𝐽) / 2))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wne 2946   class class class wbr 5166  cmpt 5249  cfv 6573  (class class class)co 7448  cr 11183  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189   < clt 11324  cle 11325  cmin 11520  -cneg 11521   / cdiv 11947  cn 12293  2c2 12348  0cn0 12553  cz 12639  (,)cioo 13407  cfl 13841  cexp 14112  abscabs 15283  cdvds 16302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-ioo 13411  df-ico 13413  df-fl 13843  df-seq 14053  df-exp 14113  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-dvds 16303
This theorem is referenced by:  knoppndvlem15  36492
  Copyright terms: Public domain W3C validator