Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  knoppndvlem10 Structured version   Visualization version   GIF version

Theorem knoppndvlem10 34701
Description: Lemma for knoppndv 34714. (Contributed by Asger C. Ipsen, 15-Jun-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.)
Hypotheses
Ref Expression
knoppndvlem10.t 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
knoppndvlem10.f 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
knoppndvlem10.a 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)
knoppndvlem10.b 𝐵 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑀 + 1))
knoppndvlem10.c (𝜑𝐶 ∈ (-1(,)1))
knoppndvlem10.j (𝜑𝐽 ∈ ℕ0)
knoppndvlem10.m (𝜑𝑀 ∈ ℤ)
knoppndvlem10.n (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
knoppndvlem10 (𝜑 → (abs‘(((𝐹𝐵)‘𝐽) − ((𝐹𝐴)‘𝐽))) = (((abs‘𝐶)↑𝐽) / 2))
Distinct variable groups:   𝐴,𝑛,𝑦   𝑥,𝐴   𝐵,𝑛,𝑦   𝑥,𝐵   𝐶,𝑛,𝑦   𝑛,𝐽   𝑥,𝐽   𝑛,𝑀,𝑦   𝑥,𝑀   𝑛,𝑁,𝑦   𝑥,𝑁   𝑇,𝑛,𝑦   𝜑,𝑛,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥)   𝑇(𝑥)   𝐹(𝑥,𝑦,𝑛)   𝐽(𝑦)

Proof of Theorem knoppndvlem10
StepHypRef Expression
1 knoppndvlem10.t . . . . . . 7 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
2 knoppndvlem10.f . . . . . . 7 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
3 knoppndvlem10.b . . . . . . 7 𝐵 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑀 + 1))
4 knoppndvlem10.c . . . . . . . 8 (𝜑𝐶 ∈ (-1(,)1))
54adantr 481 . . . . . . 7 ((𝜑 ∧ 2 ∥ 𝑀) → 𝐶 ∈ (-1(,)1))
6 knoppndvlem10.j . . . . . . . 8 (𝜑𝐽 ∈ ℕ0)
76adantr 481 . . . . . . 7 ((𝜑 ∧ 2 ∥ 𝑀) → 𝐽 ∈ ℕ0)
8 knoppndvlem10.m . . . . . . . . 9 (𝜑𝑀 ∈ ℤ)
98peano2zd 12429 . . . . . . . 8 (𝜑 → (𝑀 + 1) ∈ ℤ)
109adantr 481 . . . . . . 7 ((𝜑 ∧ 2 ∥ 𝑀) → (𝑀 + 1) ∈ ℤ)
11 knoppndvlem10.n . . . . . . . 8 (𝜑𝑁 ∈ ℕ)
1211adantr 481 . . . . . . 7 ((𝜑 ∧ 2 ∥ 𝑀) → 𝑁 ∈ ℕ)
13 notnot 142 . . . . . . . . 9 (2 ∥ 𝑀 → ¬ ¬ 2 ∥ 𝑀)
1413adantl 482 . . . . . . . 8 ((𝜑 ∧ 2 ∥ 𝑀) → ¬ ¬ 2 ∥ 𝑀)
158adantr 481 . . . . . . . . 9 ((𝜑 ∧ 2 ∥ 𝑀) → 𝑀 ∈ ℤ)
16 oddp1even 16053 . . . . . . . . 9 (𝑀 ∈ ℤ → (¬ 2 ∥ 𝑀 ↔ 2 ∥ (𝑀 + 1)))
1715, 16syl 17 . . . . . . . 8 ((𝜑 ∧ 2 ∥ 𝑀) → (¬ 2 ∥ 𝑀 ↔ 2 ∥ (𝑀 + 1)))
1814, 17mtbid 324 . . . . . . 7 ((𝜑 ∧ 2 ∥ 𝑀) → ¬ 2 ∥ (𝑀 + 1))
191, 2, 3, 5, 7, 10, 12, 18knoppndvlem9 34700 . . . . . 6 ((𝜑 ∧ 2 ∥ 𝑀) → ((𝐹𝐵)‘𝐽) = ((𝐶𝐽) / 2))
20 knoppndvlem10.a . . . . . . 7 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)
2114notnotrd 133 . . . . . . 7 ((𝜑 ∧ 2 ∥ 𝑀) → 2 ∥ 𝑀)
221, 2, 20, 5, 7, 15, 12, 21knoppndvlem8 34699 . . . . . 6 ((𝜑 ∧ 2 ∥ 𝑀) → ((𝐹𝐴)‘𝐽) = 0)
2319, 22oveq12d 7293 . . . . 5 ((𝜑 ∧ 2 ∥ 𝑀) → (((𝐹𝐵)‘𝐽) − ((𝐹𝐴)‘𝐽)) = (((𝐶𝐽) / 2) − 0))
244knoppndvlem3 34694 . . . . . . . . . . 11 (𝜑 → (𝐶 ∈ ℝ ∧ (abs‘𝐶) < 1))
2524simpld 495 . . . . . . . . . 10 (𝜑𝐶 ∈ ℝ)
2625recnd 11003 . . . . . . . . 9 (𝜑𝐶 ∈ ℂ)
2726, 6expcld 13864 . . . . . . . 8 (𝜑 → (𝐶𝐽) ∈ ℂ)
28 2cnd 12051 . . . . . . . 8 (𝜑 → 2 ∈ ℂ)
29 2ne0 12077 . . . . . . . . 9 2 ≠ 0
3029a1i 11 . . . . . . . 8 (𝜑 → 2 ≠ 0)
3127, 28, 30divcld 11751 . . . . . . 7 (𝜑 → ((𝐶𝐽) / 2) ∈ ℂ)
3231subid1d 11321 . . . . . 6 (𝜑 → (((𝐶𝐽) / 2) − 0) = ((𝐶𝐽) / 2))
3332adantr 481 . . . . 5 ((𝜑 ∧ 2 ∥ 𝑀) → (((𝐶𝐽) / 2) − 0) = ((𝐶𝐽) / 2))
3423, 33eqtrd 2778 . . . 4 ((𝜑 ∧ 2 ∥ 𝑀) → (((𝐹𝐵)‘𝐽) − ((𝐹𝐴)‘𝐽)) = ((𝐶𝐽) / 2))
3534fveq2d 6778 . . 3 ((𝜑 ∧ 2 ∥ 𝑀) → (abs‘(((𝐹𝐵)‘𝐽) − ((𝐹𝐴)‘𝐽))) = (abs‘((𝐶𝐽) / 2)))
363a1i 11 . . . . . . . . 9 (𝜑𝐵 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑀 + 1)))
376nn0zd 12424 . . . . . . . . . 10 (𝜑𝐽 ∈ ℤ)
3811, 37, 9knoppndvlem1 34692 . . . . . . . . 9 (𝜑 → ((((2 · 𝑁)↑-𝐽) / 2) · (𝑀 + 1)) ∈ ℝ)
3936, 38eqeltrd 2839 . . . . . . . 8 (𝜑𝐵 ∈ ℝ)
401, 2, 11, 25, 39, 6knoppcnlem3 34675 . . . . . . 7 (𝜑 → ((𝐹𝐵)‘𝐽) ∈ ℝ)
4140recnd 11003 . . . . . 6 (𝜑 → ((𝐹𝐵)‘𝐽) ∈ ℂ)
4220a1i 11 . . . . . . . . 9 (𝜑𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀))
4311, 37, 8knoppndvlem1 34692 . . . . . . . . 9 (𝜑 → ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀) ∈ ℝ)
4442, 43eqeltrd 2839 . . . . . . . 8 (𝜑𝐴 ∈ ℝ)
451, 2, 11, 25, 44, 6knoppcnlem3 34675 . . . . . . 7 (𝜑 → ((𝐹𝐴)‘𝐽) ∈ ℝ)
4645recnd 11003 . . . . . 6 (𝜑 → ((𝐹𝐴)‘𝐽) ∈ ℂ)
4741, 46abssubd 15165 . . . . 5 (𝜑 → (abs‘(((𝐹𝐵)‘𝐽) − ((𝐹𝐴)‘𝐽))) = (abs‘(((𝐹𝐴)‘𝐽) − ((𝐹𝐵)‘𝐽))))
4847adantr 481 . . . 4 ((𝜑 ∧ ¬ 2 ∥ 𝑀) → (abs‘(((𝐹𝐵)‘𝐽) − ((𝐹𝐴)‘𝐽))) = (abs‘(((𝐹𝐴)‘𝐽) − ((𝐹𝐵)‘𝐽))))
494adantr 481 . . . . . . . 8 ((𝜑 ∧ ¬ 2 ∥ 𝑀) → 𝐶 ∈ (-1(,)1))
506adantr 481 . . . . . . . 8 ((𝜑 ∧ ¬ 2 ∥ 𝑀) → 𝐽 ∈ ℕ0)
518adantr 481 . . . . . . . 8 ((𝜑 ∧ ¬ 2 ∥ 𝑀) → 𝑀 ∈ ℤ)
5211adantr 481 . . . . . . . 8 ((𝜑 ∧ ¬ 2 ∥ 𝑀) → 𝑁 ∈ ℕ)
53 simpr 485 . . . . . . . 8 ((𝜑 ∧ ¬ 2 ∥ 𝑀) → ¬ 2 ∥ 𝑀)
541, 2, 20, 49, 50, 51, 52, 53knoppndvlem9 34700 . . . . . . 7 ((𝜑 ∧ ¬ 2 ∥ 𝑀) → ((𝐹𝐴)‘𝐽) = ((𝐶𝐽) / 2))
559adantr 481 . . . . . . . 8 ((𝜑 ∧ ¬ 2 ∥ 𝑀) → (𝑀 + 1) ∈ ℤ)
5651, 16syl 17 . . . . . . . . 9 ((𝜑 ∧ ¬ 2 ∥ 𝑀) → (¬ 2 ∥ 𝑀 ↔ 2 ∥ (𝑀 + 1)))
5753, 56mpbid 231 . . . . . . . 8 ((𝜑 ∧ ¬ 2 ∥ 𝑀) → 2 ∥ (𝑀 + 1))
581, 2, 3, 49, 50, 55, 52, 57knoppndvlem8 34699 . . . . . . 7 ((𝜑 ∧ ¬ 2 ∥ 𝑀) → ((𝐹𝐵)‘𝐽) = 0)
5954, 58oveq12d 7293 . . . . . 6 ((𝜑 ∧ ¬ 2 ∥ 𝑀) → (((𝐹𝐴)‘𝐽) − ((𝐹𝐵)‘𝐽)) = (((𝐶𝐽) / 2) − 0))
6032adantr 481 . . . . . 6 ((𝜑 ∧ ¬ 2 ∥ 𝑀) → (((𝐶𝐽) / 2) − 0) = ((𝐶𝐽) / 2))
6159, 60eqtrd 2778 . . . . 5 ((𝜑 ∧ ¬ 2 ∥ 𝑀) → (((𝐹𝐴)‘𝐽) − ((𝐹𝐵)‘𝐽)) = ((𝐶𝐽) / 2))
6261fveq2d 6778 . . . 4 ((𝜑 ∧ ¬ 2 ∥ 𝑀) → (abs‘(((𝐹𝐴)‘𝐽) − ((𝐹𝐵)‘𝐽))) = (abs‘((𝐶𝐽) / 2)))
6348, 62eqtrd 2778 . . 3 ((𝜑 ∧ ¬ 2 ∥ 𝑀) → (abs‘(((𝐹𝐵)‘𝐽) − ((𝐹𝐴)‘𝐽))) = (abs‘((𝐶𝐽) / 2)))
6435, 63pm2.61dan 810 . 2 (𝜑 → (abs‘(((𝐹𝐵)‘𝐽) − ((𝐹𝐴)‘𝐽))) = (abs‘((𝐶𝐽) / 2)))
6527, 28, 30absdivd 15167 . . 3 (𝜑 → (abs‘((𝐶𝐽) / 2)) = ((abs‘(𝐶𝐽)) / (abs‘2)))
6626, 6absexpd 15164 . . . 4 (𝜑 → (abs‘(𝐶𝐽)) = ((abs‘𝐶)↑𝐽))
67 0le2 12075 . . . . . 6 0 ≤ 2
68 2re 12047 . . . . . . 7 2 ∈ ℝ
6968absidi 15089 . . . . . 6 (0 ≤ 2 → (abs‘2) = 2)
7067, 69ax-mp 5 . . . . 5 (abs‘2) = 2
7170a1i 11 . . . 4 (𝜑 → (abs‘2) = 2)
7266, 71oveq12d 7293 . . 3 (𝜑 → ((abs‘(𝐶𝐽)) / (abs‘2)) = (((abs‘𝐶)↑𝐽) / 2))
7365, 72eqtrd 2778 . 2 (𝜑 → (abs‘((𝐶𝐽) / 2)) = (((abs‘𝐶)↑𝐽) / 2))
7464, 73eqtrd 2778 1 (𝜑 → (abs‘(((𝐹𝐵)‘𝐽) − ((𝐹𝐴)‘𝐽))) = (((abs‘𝐶)↑𝐽) / 2))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wne 2943   class class class wbr 5074  cmpt 5157  cfv 6433  (class class class)co 7275  cr 10870  0cc0 10871  1c1 10872   + caddc 10874   · cmul 10876   < clt 11009  cle 11010  cmin 11205  -cneg 11206   / cdiv 11632  cn 11973  2c2 12028  0cn0 12233  cz 12319  (,)cioo 13079  cfl 13510  cexp 13782  abscabs 14945  cdvds 15963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-ioo 13083  df-ico 13085  df-fl 13512  df-seq 13722  df-exp 13783  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-dvds 15964
This theorem is referenced by:  knoppndvlem15  34706
  Copyright terms: Public domain W3C validator