Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  knoppndvlem10 Structured version   Visualization version   GIF version

Theorem knoppndvlem10 36555
Description: Lemma for knoppndv 36568. (Contributed by Asger C. Ipsen, 15-Jun-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.)
Hypotheses
Ref Expression
knoppndvlem10.t 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
knoppndvlem10.f 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
knoppndvlem10.a 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)
knoppndvlem10.b 𝐵 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑀 + 1))
knoppndvlem10.c (𝜑𝐶 ∈ (-1(,)1))
knoppndvlem10.j (𝜑𝐽 ∈ ℕ0)
knoppndvlem10.m (𝜑𝑀 ∈ ℤ)
knoppndvlem10.n (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
knoppndvlem10 (𝜑 → (abs‘(((𝐹𝐵)‘𝐽) − ((𝐹𝐴)‘𝐽))) = (((abs‘𝐶)↑𝐽) / 2))
Distinct variable groups:   𝐴,𝑛,𝑦   𝑥,𝐴   𝐵,𝑛,𝑦   𝑥,𝐵   𝐶,𝑛,𝑦   𝑛,𝐽   𝑥,𝐽   𝑛,𝑀,𝑦   𝑥,𝑀   𝑛,𝑁,𝑦   𝑥,𝑁   𝑇,𝑛,𝑦   𝜑,𝑛,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥)   𝑇(𝑥)   𝐹(𝑥,𝑦,𝑛)   𝐽(𝑦)

Proof of Theorem knoppndvlem10
StepHypRef Expression
1 knoppndvlem10.t . . . . . . 7 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
2 knoppndvlem10.f . . . . . . 7 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
3 knoppndvlem10.b . . . . . . 7 𝐵 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑀 + 1))
4 knoppndvlem10.c . . . . . . . 8 (𝜑𝐶 ∈ (-1(,)1))
54adantr 480 . . . . . . 7 ((𝜑 ∧ 2 ∥ 𝑀) → 𝐶 ∈ (-1(,)1))
6 knoppndvlem10.j . . . . . . . 8 (𝜑𝐽 ∈ ℕ0)
76adantr 480 . . . . . . 7 ((𝜑 ∧ 2 ∥ 𝑀) → 𝐽 ∈ ℕ0)
8 knoppndvlem10.m . . . . . . . . 9 (𝜑𝑀 ∈ ℤ)
98peano2zd 12575 . . . . . . . 8 (𝜑 → (𝑀 + 1) ∈ ℤ)
109adantr 480 . . . . . . 7 ((𝜑 ∧ 2 ∥ 𝑀) → (𝑀 + 1) ∈ ℤ)
11 knoppndvlem10.n . . . . . . . 8 (𝜑𝑁 ∈ ℕ)
1211adantr 480 . . . . . . 7 ((𝜑 ∧ 2 ∥ 𝑀) → 𝑁 ∈ ℕ)
13 notnot 142 . . . . . . . . 9 (2 ∥ 𝑀 → ¬ ¬ 2 ∥ 𝑀)
1413adantl 481 . . . . . . . 8 ((𝜑 ∧ 2 ∥ 𝑀) → ¬ ¬ 2 ∥ 𝑀)
158adantr 480 . . . . . . . . 9 ((𝜑 ∧ 2 ∥ 𝑀) → 𝑀 ∈ ℤ)
16 oddp1even 16250 . . . . . . . . 9 (𝑀 ∈ ℤ → (¬ 2 ∥ 𝑀 ↔ 2 ∥ (𝑀 + 1)))
1715, 16syl 17 . . . . . . . 8 ((𝜑 ∧ 2 ∥ 𝑀) → (¬ 2 ∥ 𝑀 ↔ 2 ∥ (𝑀 + 1)))
1814, 17mtbid 324 . . . . . . 7 ((𝜑 ∧ 2 ∥ 𝑀) → ¬ 2 ∥ (𝑀 + 1))
191, 2, 3, 5, 7, 10, 12, 18knoppndvlem9 36554 . . . . . 6 ((𝜑 ∧ 2 ∥ 𝑀) → ((𝐹𝐵)‘𝐽) = ((𝐶𝐽) / 2))
20 knoppndvlem10.a . . . . . . 7 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)
2114notnotrd 133 . . . . . . 7 ((𝜑 ∧ 2 ∥ 𝑀) → 2 ∥ 𝑀)
221, 2, 20, 5, 7, 15, 12, 21knoppndvlem8 36553 . . . . . 6 ((𝜑 ∧ 2 ∥ 𝑀) → ((𝐹𝐴)‘𝐽) = 0)
2319, 22oveq12d 7359 . . . . 5 ((𝜑 ∧ 2 ∥ 𝑀) → (((𝐹𝐵)‘𝐽) − ((𝐹𝐴)‘𝐽)) = (((𝐶𝐽) / 2) − 0))
244knoppndvlem3 36548 . . . . . . . . . . 11 (𝜑 → (𝐶 ∈ ℝ ∧ (abs‘𝐶) < 1))
2524simpld 494 . . . . . . . . . 10 (𝜑𝐶 ∈ ℝ)
2625recnd 11135 . . . . . . . . 9 (𝜑𝐶 ∈ ℂ)
2726, 6expcld 14048 . . . . . . . 8 (𝜑 → (𝐶𝐽) ∈ ℂ)
28 2cnd 12198 . . . . . . . 8 (𝜑 → 2 ∈ ℂ)
29 2ne0 12224 . . . . . . . . 9 2 ≠ 0
3029a1i 11 . . . . . . . 8 (𝜑 → 2 ≠ 0)
3127, 28, 30divcld 11892 . . . . . . 7 (𝜑 → ((𝐶𝐽) / 2) ∈ ℂ)
3231subid1d 11456 . . . . . 6 (𝜑 → (((𝐶𝐽) / 2) − 0) = ((𝐶𝐽) / 2))
3332adantr 480 . . . . 5 ((𝜑 ∧ 2 ∥ 𝑀) → (((𝐶𝐽) / 2) − 0) = ((𝐶𝐽) / 2))
3423, 33eqtrd 2766 . . . 4 ((𝜑 ∧ 2 ∥ 𝑀) → (((𝐹𝐵)‘𝐽) − ((𝐹𝐴)‘𝐽)) = ((𝐶𝐽) / 2))
3534fveq2d 6821 . . 3 ((𝜑 ∧ 2 ∥ 𝑀) → (abs‘(((𝐹𝐵)‘𝐽) − ((𝐹𝐴)‘𝐽))) = (abs‘((𝐶𝐽) / 2)))
363a1i 11 . . . . . . . . 9 (𝜑𝐵 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑀 + 1)))
376nn0zd 12489 . . . . . . . . . 10 (𝜑𝐽 ∈ ℤ)
3811, 37, 9knoppndvlem1 36546 . . . . . . . . 9 (𝜑 → ((((2 · 𝑁)↑-𝐽) / 2) · (𝑀 + 1)) ∈ ℝ)
3936, 38eqeltrd 2831 . . . . . . . 8 (𝜑𝐵 ∈ ℝ)
401, 2, 11, 25, 39, 6knoppcnlem3 36529 . . . . . . 7 (𝜑 → ((𝐹𝐵)‘𝐽) ∈ ℝ)
4140recnd 11135 . . . . . 6 (𝜑 → ((𝐹𝐵)‘𝐽) ∈ ℂ)
4220a1i 11 . . . . . . . . 9 (𝜑𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀))
4311, 37, 8knoppndvlem1 36546 . . . . . . . . 9 (𝜑 → ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀) ∈ ℝ)
4442, 43eqeltrd 2831 . . . . . . . 8 (𝜑𝐴 ∈ ℝ)
451, 2, 11, 25, 44, 6knoppcnlem3 36529 . . . . . . 7 (𝜑 → ((𝐹𝐴)‘𝐽) ∈ ℝ)
4645recnd 11135 . . . . . 6 (𝜑 → ((𝐹𝐴)‘𝐽) ∈ ℂ)
4741, 46abssubd 15358 . . . . 5 (𝜑 → (abs‘(((𝐹𝐵)‘𝐽) − ((𝐹𝐴)‘𝐽))) = (abs‘(((𝐹𝐴)‘𝐽) − ((𝐹𝐵)‘𝐽))))
4847adantr 480 . . . 4 ((𝜑 ∧ ¬ 2 ∥ 𝑀) → (abs‘(((𝐹𝐵)‘𝐽) − ((𝐹𝐴)‘𝐽))) = (abs‘(((𝐹𝐴)‘𝐽) − ((𝐹𝐵)‘𝐽))))
494adantr 480 . . . . . . . 8 ((𝜑 ∧ ¬ 2 ∥ 𝑀) → 𝐶 ∈ (-1(,)1))
506adantr 480 . . . . . . . 8 ((𝜑 ∧ ¬ 2 ∥ 𝑀) → 𝐽 ∈ ℕ0)
518adantr 480 . . . . . . . 8 ((𝜑 ∧ ¬ 2 ∥ 𝑀) → 𝑀 ∈ ℤ)
5211adantr 480 . . . . . . . 8 ((𝜑 ∧ ¬ 2 ∥ 𝑀) → 𝑁 ∈ ℕ)
53 simpr 484 . . . . . . . 8 ((𝜑 ∧ ¬ 2 ∥ 𝑀) → ¬ 2 ∥ 𝑀)
541, 2, 20, 49, 50, 51, 52, 53knoppndvlem9 36554 . . . . . . 7 ((𝜑 ∧ ¬ 2 ∥ 𝑀) → ((𝐹𝐴)‘𝐽) = ((𝐶𝐽) / 2))
559adantr 480 . . . . . . . 8 ((𝜑 ∧ ¬ 2 ∥ 𝑀) → (𝑀 + 1) ∈ ℤ)
5651, 16syl 17 . . . . . . . . 9 ((𝜑 ∧ ¬ 2 ∥ 𝑀) → (¬ 2 ∥ 𝑀 ↔ 2 ∥ (𝑀 + 1)))
5753, 56mpbid 232 . . . . . . . 8 ((𝜑 ∧ ¬ 2 ∥ 𝑀) → 2 ∥ (𝑀 + 1))
581, 2, 3, 49, 50, 55, 52, 57knoppndvlem8 36553 . . . . . . 7 ((𝜑 ∧ ¬ 2 ∥ 𝑀) → ((𝐹𝐵)‘𝐽) = 0)
5954, 58oveq12d 7359 . . . . . 6 ((𝜑 ∧ ¬ 2 ∥ 𝑀) → (((𝐹𝐴)‘𝐽) − ((𝐹𝐵)‘𝐽)) = (((𝐶𝐽) / 2) − 0))
6032adantr 480 . . . . . 6 ((𝜑 ∧ ¬ 2 ∥ 𝑀) → (((𝐶𝐽) / 2) − 0) = ((𝐶𝐽) / 2))
6159, 60eqtrd 2766 . . . . 5 ((𝜑 ∧ ¬ 2 ∥ 𝑀) → (((𝐹𝐴)‘𝐽) − ((𝐹𝐵)‘𝐽)) = ((𝐶𝐽) / 2))
6261fveq2d 6821 . . . 4 ((𝜑 ∧ ¬ 2 ∥ 𝑀) → (abs‘(((𝐹𝐴)‘𝐽) − ((𝐹𝐵)‘𝐽))) = (abs‘((𝐶𝐽) / 2)))
6348, 62eqtrd 2766 . . 3 ((𝜑 ∧ ¬ 2 ∥ 𝑀) → (abs‘(((𝐹𝐵)‘𝐽) − ((𝐹𝐴)‘𝐽))) = (abs‘((𝐶𝐽) / 2)))
6435, 63pm2.61dan 812 . 2 (𝜑 → (abs‘(((𝐹𝐵)‘𝐽) − ((𝐹𝐴)‘𝐽))) = (abs‘((𝐶𝐽) / 2)))
6527, 28, 30absdivd 15360 . . 3 (𝜑 → (abs‘((𝐶𝐽) / 2)) = ((abs‘(𝐶𝐽)) / (abs‘2)))
6626, 6absexpd 15357 . . . 4 (𝜑 → (abs‘(𝐶𝐽)) = ((abs‘𝐶)↑𝐽))
67 0le2 12222 . . . . . 6 0 ≤ 2
68 2re 12194 . . . . . . 7 2 ∈ ℝ
6968absidi 15280 . . . . . 6 (0 ≤ 2 → (abs‘2) = 2)
7067, 69ax-mp 5 . . . . 5 (abs‘2) = 2
7170a1i 11 . . . 4 (𝜑 → (abs‘2) = 2)
7266, 71oveq12d 7359 . . 3 (𝜑 → ((abs‘(𝐶𝐽)) / (abs‘2)) = (((abs‘𝐶)↑𝐽) / 2))
7365, 72eqtrd 2766 . 2 (𝜑 → (abs‘((𝐶𝐽) / 2)) = (((abs‘𝐶)↑𝐽) / 2))
7464, 73eqtrd 2766 1 (𝜑 → (abs‘(((𝐹𝐵)‘𝐽) − ((𝐹𝐴)‘𝐽))) = (((abs‘𝐶)↑𝐽) / 2))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wne 2928   class class class wbr 5086  cmpt 5167  cfv 6476  (class class class)co 7341  cr 11000  0cc0 11001  1c1 11002   + caddc 11004   · cmul 11006   < clt 11141  cle 11142  cmin 11339  -cneg 11340   / cdiv 11769  cn 12120  2c2 12175  0cn0 12376  cz 12463  (,)cioo 13240  cfl 13689  cexp 13963  abscabs 15136  cdvds 16158
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078  ax-pre-sup 11079
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-sup 9321  df-inf 9322  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-div 11770  df-nn 12121  df-2 12183  df-3 12184  df-n0 12377  df-z 12464  df-uz 12728  df-rp 12886  df-ioo 13244  df-ico 13246  df-fl 13691  df-seq 13904  df-exp 13964  df-cj 15001  df-re 15002  df-im 15003  df-sqrt 15137  df-abs 15138  df-dvds 16159
This theorem is referenced by:  knoppndvlem15  36560
  Copyright terms: Public domain W3C validator