Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  knoppndvlem10 Structured version   Visualization version   GIF version

Theorem knoppndvlem10 36504
Description: Lemma for knoppndv 36517. (Contributed by Asger C. Ipsen, 15-Jun-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.)
Hypotheses
Ref Expression
knoppndvlem10.t 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
knoppndvlem10.f 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
knoppndvlem10.a 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)
knoppndvlem10.b 𝐵 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑀 + 1))
knoppndvlem10.c (𝜑𝐶 ∈ (-1(,)1))
knoppndvlem10.j (𝜑𝐽 ∈ ℕ0)
knoppndvlem10.m (𝜑𝑀 ∈ ℤ)
knoppndvlem10.n (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
knoppndvlem10 (𝜑 → (abs‘(((𝐹𝐵)‘𝐽) − ((𝐹𝐴)‘𝐽))) = (((abs‘𝐶)↑𝐽) / 2))
Distinct variable groups:   𝐴,𝑛,𝑦   𝑥,𝐴   𝐵,𝑛,𝑦   𝑥,𝐵   𝐶,𝑛,𝑦   𝑛,𝐽   𝑥,𝐽   𝑛,𝑀,𝑦   𝑥,𝑀   𝑛,𝑁,𝑦   𝑥,𝑁   𝑇,𝑛,𝑦   𝜑,𝑛,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥)   𝑇(𝑥)   𝐹(𝑥,𝑦,𝑛)   𝐽(𝑦)

Proof of Theorem knoppndvlem10
StepHypRef Expression
1 knoppndvlem10.t . . . . . . 7 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
2 knoppndvlem10.f . . . . . . 7 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
3 knoppndvlem10.b . . . . . . 7 𝐵 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑀 + 1))
4 knoppndvlem10.c . . . . . . . 8 (𝜑𝐶 ∈ (-1(,)1))
54adantr 480 . . . . . . 7 ((𝜑 ∧ 2 ∥ 𝑀) → 𝐶 ∈ (-1(,)1))
6 knoppndvlem10.j . . . . . . . 8 (𝜑𝐽 ∈ ℕ0)
76adantr 480 . . . . . . 7 ((𝜑 ∧ 2 ∥ 𝑀) → 𝐽 ∈ ℕ0)
8 knoppndvlem10.m . . . . . . . . 9 (𝜑𝑀 ∈ ℤ)
98peano2zd 12723 . . . . . . . 8 (𝜑 → (𝑀 + 1) ∈ ℤ)
109adantr 480 . . . . . . 7 ((𝜑 ∧ 2 ∥ 𝑀) → (𝑀 + 1) ∈ ℤ)
11 knoppndvlem10.n . . . . . . . 8 (𝜑𝑁 ∈ ℕ)
1211adantr 480 . . . . . . 7 ((𝜑 ∧ 2 ∥ 𝑀) → 𝑁 ∈ ℕ)
13 notnot 142 . . . . . . . . 9 (2 ∥ 𝑀 → ¬ ¬ 2 ∥ 𝑀)
1413adantl 481 . . . . . . . 8 ((𝜑 ∧ 2 ∥ 𝑀) → ¬ ¬ 2 ∥ 𝑀)
158adantr 480 . . . . . . . . 9 ((𝜑 ∧ 2 ∥ 𝑀) → 𝑀 ∈ ℤ)
16 oddp1even 16378 . . . . . . . . 9 (𝑀 ∈ ℤ → (¬ 2 ∥ 𝑀 ↔ 2 ∥ (𝑀 + 1)))
1715, 16syl 17 . . . . . . . 8 ((𝜑 ∧ 2 ∥ 𝑀) → (¬ 2 ∥ 𝑀 ↔ 2 ∥ (𝑀 + 1)))
1814, 17mtbid 324 . . . . . . 7 ((𝜑 ∧ 2 ∥ 𝑀) → ¬ 2 ∥ (𝑀 + 1))
191, 2, 3, 5, 7, 10, 12, 18knoppndvlem9 36503 . . . . . 6 ((𝜑 ∧ 2 ∥ 𝑀) → ((𝐹𝐵)‘𝐽) = ((𝐶𝐽) / 2))
20 knoppndvlem10.a . . . . . . 7 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)
2114notnotrd 133 . . . . . . 7 ((𝜑 ∧ 2 ∥ 𝑀) → 2 ∥ 𝑀)
221, 2, 20, 5, 7, 15, 12, 21knoppndvlem8 36502 . . . . . 6 ((𝜑 ∧ 2 ∥ 𝑀) → ((𝐹𝐴)‘𝐽) = 0)
2319, 22oveq12d 7449 . . . . 5 ((𝜑 ∧ 2 ∥ 𝑀) → (((𝐹𝐵)‘𝐽) − ((𝐹𝐴)‘𝐽)) = (((𝐶𝐽) / 2) − 0))
244knoppndvlem3 36497 . . . . . . . . . . 11 (𝜑 → (𝐶 ∈ ℝ ∧ (abs‘𝐶) < 1))
2524simpld 494 . . . . . . . . . 10 (𝜑𝐶 ∈ ℝ)
2625recnd 11287 . . . . . . . . 9 (𝜑𝐶 ∈ ℂ)
2726, 6expcld 14183 . . . . . . . 8 (𝜑 → (𝐶𝐽) ∈ ℂ)
28 2cnd 12342 . . . . . . . 8 (𝜑 → 2 ∈ ℂ)
29 2ne0 12368 . . . . . . . . 9 2 ≠ 0
3029a1i 11 . . . . . . . 8 (𝜑 → 2 ≠ 0)
3127, 28, 30divcld 12041 . . . . . . 7 (𝜑 → ((𝐶𝐽) / 2) ∈ ℂ)
3231subid1d 11607 . . . . . 6 (𝜑 → (((𝐶𝐽) / 2) − 0) = ((𝐶𝐽) / 2))
3332adantr 480 . . . . 5 ((𝜑 ∧ 2 ∥ 𝑀) → (((𝐶𝐽) / 2) − 0) = ((𝐶𝐽) / 2))
3423, 33eqtrd 2775 . . . 4 ((𝜑 ∧ 2 ∥ 𝑀) → (((𝐹𝐵)‘𝐽) − ((𝐹𝐴)‘𝐽)) = ((𝐶𝐽) / 2))
3534fveq2d 6911 . . 3 ((𝜑 ∧ 2 ∥ 𝑀) → (abs‘(((𝐹𝐵)‘𝐽) − ((𝐹𝐴)‘𝐽))) = (abs‘((𝐶𝐽) / 2)))
363a1i 11 . . . . . . . . 9 (𝜑𝐵 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑀 + 1)))
376nn0zd 12637 . . . . . . . . . 10 (𝜑𝐽 ∈ ℤ)
3811, 37, 9knoppndvlem1 36495 . . . . . . . . 9 (𝜑 → ((((2 · 𝑁)↑-𝐽) / 2) · (𝑀 + 1)) ∈ ℝ)
3936, 38eqeltrd 2839 . . . . . . . 8 (𝜑𝐵 ∈ ℝ)
401, 2, 11, 25, 39, 6knoppcnlem3 36478 . . . . . . 7 (𝜑 → ((𝐹𝐵)‘𝐽) ∈ ℝ)
4140recnd 11287 . . . . . 6 (𝜑 → ((𝐹𝐵)‘𝐽) ∈ ℂ)
4220a1i 11 . . . . . . . . 9 (𝜑𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀))
4311, 37, 8knoppndvlem1 36495 . . . . . . . . 9 (𝜑 → ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀) ∈ ℝ)
4442, 43eqeltrd 2839 . . . . . . . 8 (𝜑𝐴 ∈ ℝ)
451, 2, 11, 25, 44, 6knoppcnlem3 36478 . . . . . . 7 (𝜑 → ((𝐹𝐴)‘𝐽) ∈ ℝ)
4645recnd 11287 . . . . . 6 (𝜑 → ((𝐹𝐴)‘𝐽) ∈ ℂ)
4741, 46abssubd 15489 . . . . 5 (𝜑 → (abs‘(((𝐹𝐵)‘𝐽) − ((𝐹𝐴)‘𝐽))) = (abs‘(((𝐹𝐴)‘𝐽) − ((𝐹𝐵)‘𝐽))))
4847adantr 480 . . . 4 ((𝜑 ∧ ¬ 2 ∥ 𝑀) → (abs‘(((𝐹𝐵)‘𝐽) − ((𝐹𝐴)‘𝐽))) = (abs‘(((𝐹𝐴)‘𝐽) − ((𝐹𝐵)‘𝐽))))
494adantr 480 . . . . . . . 8 ((𝜑 ∧ ¬ 2 ∥ 𝑀) → 𝐶 ∈ (-1(,)1))
506adantr 480 . . . . . . . 8 ((𝜑 ∧ ¬ 2 ∥ 𝑀) → 𝐽 ∈ ℕ0)
518adantr 480 . . . . . . . 8 ((𝜑 ∧ ¬ 2 ∥ 𝑀) → 𝑀 ∈ ℤ)
5211adantr 480 . . . . . . . 8 ((𝜑 ∧ ¬ 2 ∥ 𝑀) → 𝑁 ∈ ℕ)
53 simpr 484 . . . . . . . 8 ((𝜑 ∧ ¬ 2 ∥ 𝑀) → ¬ 2 ∥ 𝑀)
541, 2, 20, 49, 50, 51, 52, 53knoppndvlem9 36503 . . . . . . 7 ((𝜑 ∧ ¬ 2 ∥ 𝑀) → ((𝐹𝐴)‘𝐽) = ((𝐶𝐽) / 2))
559adantr 480 . . . . . . . 8 ((𝜑 ∧ ¬ 2 ∥ 𝑀) → (𝑀 + 1) ∈ ℤ)
5651, 16syl 17 . . . . . . . . 9 ((𝜑 ∧ ¬ 2 ∥ 𝑀) → (¬ 2 ∥ 𝑀 ↔ 2 ∥ (𝑀 + 1)))
5753, 56mpbid 232 . . . . . . . 8 ((𝜑 ∧ ¬ 2 ∥ 𝑀) → 2 ∥ (𝑀 + 1))
581, 2, 3, 49, 50, 55, 52, 57knoppndvlem8 36502 . . . . . . 7 ((𝜑 ∧ ¬ 2 ∥ 𝑀) → ((𝐹𝐵)‘𝐽) = 0)
5954, 58oveq12d 7449 . . . . . 6 ((𝜑 ∧ ¬ 2 ∥ 𝑀) → (((𝐹𝐴)‘𝐽) − ((𝐹𝐵)‘𝐽)) = (((𝐶𝐽) / 2) − 0))
6032adantr 480 . . . . . 6 ((𝜑 ∧ ¬ 2 ∥ 𝑀) → (((𝐶𝐽) / 2) − 0) = ((𝐶𝐽) / 2))
6159, 60eqtrd 2775 . . . . 5 ((𝜑 ∧ ¬ 2 ∥ 𝑀) → (((𝐹𝐴)‘𝐽) − ((𝐹𝐵)‘𝐽)) = ((𝐶𝐽) / 2))
6261fveq2d 6911 . . . 4 ((𝜑 ∧ ¬ 2 ∥ 𝑀) → (abs‘(((𝐹𝐴)‘𝐽) − ((𝐹𝐵)‘𝐽))) = (abs‘((𝐶𝐽) / 2)))
6348, 62eqtrd 2775 . . 3 ((𝜑 ∧ ¬ 2 ∥ 𝑀) → (abs‘(((𝐹𝐵)‘𝐽) − ((𝐹𝐴)‘𝐽))) = (abs‘((𝐶𝐽) / 2)))
6435, 63pm2.61dan 813 . 2 (𝜑 → (abs‘(((𝐹𝐵)‘𝐽) − ((𝐹𝐴)‘𝐽))) = (abs‘((𝐶𝐽) / 2)))
6527, 28, 30absdivd 15491 . . 3 (𝜑 → (abs‘((𝐶𝐽) / 2)) = ((abs‘(𝐶𝐽)) / (abs‘2)))
6626, 6absexpd 15488 . . . 4 (𝜑 → (abs‘(𝐶𝐽)) = ((abs‘𝐶)↑𝐽))
67 0le2 12366 . . . . . 6 0 ≤ 2
68 2re 12338 . . . . . . 7 2 ∈ ℝ
6968absidi 15413 . . . . . 6 (0 ≤ 2 → (abs‘2) = 2)
7067, 69ax-mp 5 . . . . 5 (abs‘2) = 2
7170a1i 11 . . . 4 (𝜑 → (abs‘2) = 2)
7266, 71oveq12d 7449 . . 3 (𝜑 → ((abs‘(𝐶𝐽)) / (abs‘2)) = (((abs‘𝐶)↑𝐽) / 2))
7365, 72eqtrd 2775 . 2 (𝜑 → (abs‘((𝐶𝐽) / 2)) = (((abs‘𝐶)↑𝐽) / 2))
7464, 73eqtrd 2775 1 (𝜑 → (abs‘(((𝐹𝐵)‘𝐽) − ((𝐹𝐴)‘𝐽))) = (((abs‘𝐶)↑𝐽) / 2))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wne 2938   class class class wbr 5148  cmpt 5231  cfv 6563  (class class class)co 7431  cr 11152  0cc0 11153  1c1 11154   + caddc 11156   · cmul 11158   < clt 11293  cle 11294  cmin 11490  -cneg 11491   / cdiv 11918  cn 12264  2c2 12319  0cn0 12524  cz 12611  (,)cioo 13384  cfl 13827  cexp 14099  abscabs 15270  cdvds 16287
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-sup 9480  df-inf 9481  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-ioo 13388  df-ico 13390  df-fl 13829  df-seq 14040  df-exp 14100  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-dvds 16288
This theorem is referenced by:  knoppndvlem15  36509
  Copyright terms: Public domain W3C validator