Proof of Theorem knoppndvlem10
Step | Hyp | Ref
| Expression |
1 | | knoppndvlem10.t |
. . . . . . 7
⊢ 𝑇 = (𝑥 ∈ ℝ ↦
(abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) |
2 | | knoppndvlem10.f |
. . . . . . 7
⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) |
3 | | knoppndvlem10.b |
. . . . . . 7
⊢ 𝐵 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑀 + 1)) |
4 | | knoppndvlem10.c |
. . . . . . . 8
⊢ (𝜑 → 𝐶 ∈ (-1(,)1)) |
5 | 4 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 2 ∥ 𝑀) → 𝐶 ∈ (-1(,)1)) |
6 | | knoppndvlem10.j |
. . . . . . . 8
⊢ (𝜑 → 𝐽 ∈
ℕ0) |
7 | 6 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 2 ∥ 𝑀) → 𝐽 ∈
ℕ0) |
8 | | knoppndvlem10.m |
. . . . . . . . 9
⊢ (𝜑 → 𝑀 ∈ ℤ) |
9 | 8 | peano2zd 12429 |
. . . . . . . 8
⊢ (𝜑 → (𝑀 + 1) ∈ ℤ) |
10 | 9 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 2 ∥ 𝑀) → (𝑀 + 1) ∈ ℤ) |
11 | | knoppndvlem10.n |
. . . . . . . 8
⊢ (𝜑 → 𝑁 ∈ ℕ) |
12 | 11 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 2 ∥ 𝑀) → 𝑁 ∈ ℕ) |
13 | | notnot 142 |
. . . . . . . . 9
⊢ (2
∥ 𝑀 → ¬
¬ 2 ∥ 𝑀) |
14 | 13 | adantl 482 |
. . . . . . . 8
⊢ ((𝜑 ∧ 2 ∥ 𝑀) → ¬ ¬ 2 ∥ 𝑀) |
15 | 8 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 2 ∥ 𝑀) → 𝑀 ∈ ℤ) |
16 | | oddp1even 16053 |
. . . . . . . . 9
⊢ (𝑀 ∈ ℤ → (¬ 2
∥ 𝑀 ↔ 2 ∥
(𝑀 + 1))) |
17 | 15, 16 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ 2 ∥ 𝑀) → (¬ 2 ∥ 𝑀 ↔ 2 ∥ (𝑀 + 1))) |
18 | 14, 17 | mtbid 324 |
. . . . . . 7
⊢ ((𝜑 ∧ 2 ∥ 𝑀) → ¬ 2 ∥ (𝑀 + 1)) |
19 | 1, 2, 3, 5, 7, 10,
12, 18 | knoppndvlem9 34700 |
. . . . . 6
⊢ ((𝜑 ∧ 2 ∥ 𝑀) → ((𝐹‘𝐵)‘𝐽) = ((𝐶↑𝐽) / 2)) |
20 | | knoppndvlem10.a |
. . . . . . 7
⊢ 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀) |
21 | 14 | notnotrd 133 |
. . . . . . 7
⊢ ((𝜑 ∧ 2 ∥ 𝑀) → 2 ∥ 𝑀) |
22 | 1, 2, 20, 5, 7, 15, 12, 21 | knoppndvlem8 34699 |
. . . . . 6
⊢ ((𝜑 ∧ 2 ∥ 𝑀) → ((𝐹‘𝐴)‘𝐽) = 0) |
23 | 19, 22 | oveq12d 7293 |
. . . . 5
⊢ ((𝜑 ∧ 2 ∥ 𝑀) → (((𝐹‘𝐵)‘𝐽) − ((𝐹‘𝐴)‘𝐽)) = (((𝐶↑𝐽) / 2) − 0)) |
24 | 4 | knoppndvlem3 34694 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐶 ∈ ℝ ∧ (abs‘𝐶) < 1)) |
25 | 24 | simpld 495 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐶 ∈ ℝ) |
26 | 25 | recnd 11003 |
. . . . . . . . 9
⊢ (𝜑 → 𝐶 ∈ ℂ) |
27 | 26, 6 | expcld 13864 |
. . . . . . . 8
⊢ (𝜑 → (𝐶↑𝐽) ∈ ℂ) |
28 | | 2cnd 12051 |
. . . . . . . 8
⊢ (𝜑 → 2 ∈
ℂ) |
29 | | 2ne0 12077 |
. . . . . . . . 9
⊢ 2 ≠
0 |
30 | 29 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → 2 ≠ 0) |
31 | 27, 28, 30 | divcld 11751 |
. . . . . . 7
⊢ (𝜑 → ((𝐶↑𝐽) / 2) ∈ ℂ) |
32 | 31 | subid1d 11321 |
. . . . . 6
⊢ (𝜑 → (((𝐶↑𝐽) / 2) − 0) = ((𝐶↑𝐽) / 2)) |
33 | 32 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 2 ∥ 𝑀) → (((𝐶↑𝐽) / 2) − 0) = ((𝐶↑𝐽) / 2)) |
34 | 23, 33 | eqtrd 2778 |
. . . 4
⊢ ((𝜑 ∧ 2 ∥ 𝑀) → (((𝐹‘𝐵)‘𝐽) − ((𝐹‘𝐴)‘𝐽)) = ((𝐶↑𝐽) / 2)) |
35 | 34 | fveq2d 6778 |
. . 3
⊢ ((𝜑 ∧ 2 ∥ 𝑀) → (abs‘(((𝐹‘𝐵)‘𝐽) − ((𝐹‘𝐴)‘𝐽))) = (abs‘((𝐶↑𝐽) / 2))) |
36 | 3 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → 𝐵 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑀 + 1))) |
37 | 6 | nn0zd 12424 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐽 ∈ ℤ) |
38 | 11, 37, 9 | knoppndvlem1 34692 |
. . . . . . . . 9
⊢ (𝜑 → ((((2 · 𝑁)↑-𝐽) / 2) · (𝑀 + 1)) ∈ ℝ) |
39 | 36, 38 | eqeltrd 2839 |
. . . . . . . 8
⊢ (𝜑 → 𝐵 ∈ ℝ) |
40 | 1, 2, 11, 25, 39, 6 | knoppcnlem3 34675 |
. . . . . . 7
⊢ (𝜑 → ((𝐹‘𝐵)‘𝐽) ∈ ℝ) |
41 | 40 | recnd 11003 |
. . . . . 6
⊢ (𝜑 → ((𝐹‘𝐵)‘𝐽) ∈ ℂ) |
42 | 20 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)) |
43 | 11, 37, 8 | knoppndvlem1 34692 |
. . . . . . . . 9
⊢ (𝜑 → ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀) ∈ ℝ) |
44 | 42, 43 | eqeltrd 2839 |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ∈ ℝ) |
45 | 1, 2, 11, 25, 44, 6 | knoppcnlem3 34675 |
. . . . . . 7
⊢ (𝜑 → ((𝐹‘𝐴)‘𝐽) ∈ ℝ) |
46 | 45 | recnd 11003 |
. . . . . 6
⊢ (𝜑 → ((𝐹‘𝐴)‘𝐽) ∈ ℂ) |
47 | 41, 46 | abssubd 15165 |
. . . . 5
⊢ (𝜑 → (abs‘(((𝐹‘𝐵)‘𝐽) − ((𝐹‘𝐴)‘𝐽))) = (abs‘(((𝐹‘𝐴)‘𝐽) − ((𝐹‘𝐵)‘𝐽)))) |
48 | 47 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ ¬ 2 ∥ 𝑀) → (abs‘(((𝐹‘𝐵)‘𝐽) − ((𝐹‘𝐴)‘𝐽))) = (abs‘(((𝐹‘𝐴)‘𝐽) − ((𝐹‘𝐵)‘𝐽)))) |
49 | 4 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ ¬ 2 ∥ 𝑀) → 𝐶 ∈ (-1(,)1)) |
50 | 6 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ ¬ 2 ∥ 𝑀) → 𝐽 ∈
ℕ0) |
51 | 8 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ ¬ 2 ∥ 𝑀) → 𝑀 ∈ ℤ) |
52 | 11 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ ¬ 2 ∥ 𝑀) → 𝑁 ∈ ℕ) |
53 | | simpr 485 |
. . . . . . . 8
⊢ ((𝜑 ∧ ¬ 2 ∥ 𝑀) → ¬ 2 ∥ 𝑀) |
54 | 1, 2, 20, 49, 50, 51, 52, 53 | knoppndvlem9 34700 |
. . . . . . 7
⊢ ((𝜑 ∧ ¬ 2 ∥ 𝑀) → ((𝐹‘𝐴)‘𝐽) = ((𝐶↑𝐽) / 2)) |
55 | 9 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ ¬ 2 ∥ 𝑀) → (𝑀 + 1) ∈ ℤ) |
56 | 51, 16 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ¬ 2 ∥ 𝑀) → (¬ 2 ∥ 𝑀 ↔ 2 ∥ (𝑀 + 1))) |
57 | 53, 56 | mpbid 231 |
. . . . . . . 8
⊢ ((𝜑 ∧ ¬ 2 ∥ 𝑀) → 2 ∥ (𝑀 + 1)) |
58 | 1, 2, 3, 49, 50, 55, 52, 57 | knoppndvlem8 34699 |
. . . . . . 7
⊢ ((𝜑 ∧ ¬ 2 ∥ 𝑀) → ((𝐹‘𝐵)‘𝐽) = 0) |
59 | 54, 58 | oveq12d 7293 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ 2 ∥ 𝑀) → (((𝐹‘𝐴)‘𝐽) − ((𝐹‘𝐵)‘𝐽)) = (((𝐶↑𝐽) / 2) − 0)) |
60 | 32 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ 2 ∥ 𝑀) → (((𝐶↑𝐽) / 2) − 0) = ((𝐶↑𝐽) / 2)) |
61 | 59, 60 | eqtrd 2778 |
. . . . 5
⊢ ((𝜑 ∧ ¬ 2 ∥ 𝑀) → (((𝐹‘𝐴)‘𝐽) − ((𝐹‘𝐵)‘𝐽)) = ((𝐶↑𝐽) / 2)) |
62 | 61 | fveq2d 6778 |
. . . 4
⊢ ((𝜑 ∧ ¬ 2 ∥ 𝑀) → (abs‘(((𝐹‘𝐴)‘𝐽) − ((𝐹‘𝐵)‘𝐽))) = (abs‘((𝐶↑𝐽) / 2))) |
63 | 48, 62 | eqtrd 2778 |
. . 3
⊢ ((𝜑 ∧ ¬ 2 ∥ 𝑀) → (abs‘(((𝐹‘𝐵)‘𝐽) − ((𝐹‘𝐴)‘𝐽))) = (abs‘((𝐶↑𝐽) / 2))) |
64 | 35, 63 | pm2.61dan 810 |
. 2
⊢ (𝜑 → (abs‘(((𝐹‘𝐵)‘𝐽) − ((𝐹‘𝐴)‘𝐽))) = (abs‘((𝐶↑𝐽) / 2))) |
65 | 27, 28, 30 | absdivd 15167 |
. . 3
⊢ (𝜑 → (abs‘((𝐶↑𝐽) / 2)) = ((abs‘(𝐶↑𝐽)) / (abs‘2))) |
66 | 26, 6 | absexpd 15164 |
. . . 4
⊢ (𝜑 → (abs‘(𝐶↑𝐽)) = ((abs‘𝐶)↑𝐽)) |
67 | | 0le2 12075 |
. . . . . 6
⊢ 0 ≤
2 |
68 | | 2re 12047 |
. . . . . . 7
⊢ 2 ∈
ℝ |
69 | 68 | absidi 15089 |
. . . . . 6
⊢ (0 ≤ 2
→ (abs‘2) = 2) |
70 | 67, 69 | ax-mp 5 |
. . . . 5
⊢
(abs‘2) = 2 |
71 | 70 | a1i 11 |
. . . 4
⊢ (𝜑 → (abs‘2) =
2) |
72 | 66, 71 | oveq12d 7293 |
. . 3
⊢ (𝜑 → ((abs‘(𝐶↑𝐽)) / (abs‘2)) = (((abs‘𝐶)↑𝐽) / 2)) |
73 | 65, 72 | eqtrd 2778 |
. 2
⊢ (𝜑 → (abs‘((𝐶↑𝐽) / 2)) = (((abs‘𝐶)↑𝐽) / 2)) |
74 | 64, 73 | eqtrd 2778 |
1
⊢ (𝜑 → (abs‘(((𝐹‘𝐵)‘𝐽) − ((𝐹‘𝐴)‘𝐽))) = (((abs‘𝐶)↑𝐽) / 2)) |