Step | Hyp | Ref
| Expression |
1 | | pthistrl 28971 |
. . . 4
β’ (πΉ(PathsβπΊ)π β πΉ(TrailsβπΊ)π) |
2 | | pthiswlk 28973 |
. . . . 5
β’ (πΉ(PathsβπΊ)π β πΉ(WalksβπΊ)π) |
3 | | eqid 2732 |
. . . . . . . 8
β’
(VtxβπΊ) =
(VtxβπΊ) |
4 | 3 | wlkp 28862 |
. . . . . . 7
β’ (πΉ(WalksβπΊ)π β π:(0...(β―βπΉ))βΆ(VtxβπΊ)) |
5 | 4 | ffund 6718 |
. . . . . 6
β’ (πΉ(WalksβπΊ)π β Fun π) |
6 | | wlklenvp1 28864 |
. . . . . . . . 9
β’ (πΉ(WalksβπΊ)π β (β―βπ) = ((β―βπΉ) + 1)) |
7 | 6 | adantr 481 |
. . . . . . . 8
β’ ((πΉ(WalksβπΊ)π β§ πΉ = β
) β (β―βπ) = ((β―βπΉ) + 1)) |
8 | | wlkv 28858 |
. . . . . . . . . . 11
β’ (πΉ(WalksβπΊ)π β (πΊ β V β§ πΉ β V β§ π β V)) |
9 | 8 | simp2d 1143 |
. . . . . . . . . 10
β’ (πΉ(WalksβπΊ)π β πΉ β V) |
10 | | hasheq0 14319 |
. . . . . . . . . . 11
β’ (πΉ β V β
((β―βπΉ) = 0
β πΉ =
β
)) |
11 | 10 | biimpar 478 |
. . . . . . . . . 10
β’ ((πΉ β V β§ πΉ = β
) β
(β―βπΉ) =
0) |
12 | 9, 11 | sylan 580 |
. . . . . . . . 9
β’ ((πΉ(WalksβπΊ)π β§ πΉ = β
) β (β―βπΉ) = 0) |
13 | | oveq1 7412 |
. . . . . . . . . 10
β’
((β―βπΉ) =
0 β ((β―βπΉ)
+ 1) = (0 + 1)) |
14 | | 0p1e1 12330 |
. . . . . . . . . 10
β’ (0 + 1) =
1 |
15 | 13, 14 | eqtrdi 2788 |
. . . . . . . . 9
β’
((β―βπΉ) =
0 β ((β―βπΉ)
+ 1) = 1) |
16 | 12, 15 | syl 17 |
. . . . . . . 8
β’ ((πΉ(WalksβπΊ)π β§ πΉ = β
) β ((β―βπΉ) + 1) = 1) |
17 | 7, 16 | eqtrd 2772 |
. . . . . . 7
β’ ((πΉ(WalksβπΊ)π β§ πΉ = β
) β (β―βπ) = 1) |
18 | 8 | simp3d 1144 |
. . . . . . . . 9
β’ (πΉ(WalksβπΊ)π β π β V) |
19 | | hashen1 14326 |
. . . . . . . . 9
β’ (π β V β
((β―βπ) = 1
β π β
1o)) |
20 | 18, 19 | syl 17 |
. . . . . . . 8
β’ (πΉ(WalksβπΊ)π β ((β―βπ) = 1 β π β 1o)) |
21 | 20 | biimpa 477 |
. . . . . . 7
β’ ((πΉ(WalksβπΊ)π β§ (β―βπ) = 1) β π β 1o) |
22 | 17, 21 | syldan 591 |
. . . . . 6
β’ ((πΉ(WalksβπΊ)π β§ πΉ = β
) β π β 1o) |
23 | | funen1cnv 34079 |
. . . . . 6
β’ ((Fun
π β§ π β 1o) β Fun β‘π) |
24 | 5, 22, 23 | syl2an2r 683 |
. . . . 5
β’ ((πΉ(WalksβπΊ)π β§ πΉ = β
) β Fun β‘π) |
25 | 2, 24 | sylan 580 |
. . . 4
β’ ((πΉ(PathsβπΊ)π β§ πΉ = β
) β Fun β‘π) |
26 | | isspth 28970 |
. . . . 5
β’ (πΉ(SPathsβπΊ)π β (πΉ(TrailsβπΊ)π β§ Fun β‘π)) |
27 | 26 | biimpri 227 |
. . . 4
β’ ((πΉ(TrailsβπΊ)π β§ Fun β‘π) β πΉ(SPathsβπΊ)π) |
28 | 1, 25, 27 | syl2an2r 683 |
. . 3
β’ ((πΉ(PathsβπΊ)π β§ πΉ = β
) β πΉ(SPathsβπΊ)π) |
29 | | fveq2 6888 |
. . . . . . 7
β’ (0 =
(β―βπΉ) β
(πβ0) = (πβ(β―βπΉ))) |
30 | 29 | eqcoms 2740 |
. . . . . 6
β’
((β―βπΉ) =
0 β (πβ0) =
(πβ(β―βπΉ))) |
31 | 12, 30 | syl 17 |
. . . . 5
β’ ((πΉ(WalksβπΊ)π β§ πΉ = β
) β (πβ0) = (πβ(β―βπΉ))) |
32 | 2, 31 | sylan 580 |
. . . 4
β’ ((πΉ(PathsβπΊ)π β§ πΉ = β
) β (πβ0) = (πβ(β―βπΉ))) |
33 | | iscycl 29037 |
. . . . 5
β’ (πΉ(CyclesβπΊ)π β (πΉ(PathsβπΊ)π β§ (πβ0) = (πβ(β―βπΉ)))) |
34 | 33 | biimpri 227 |
. . . 4
β’ ((πΉ(PathsβπΊ)π β§ (πβ0) = (πβ(β―βπΉ))) β πΉ(CyclesβπΊ)π) |
35 | 32, 34 | syldan 591 |
. . 3
β’ ((πΉ(PathsβπΊ)π β§ πΉ = β
) β πΉ(CyclesβπΊ)π) |
36 | 28, 35 | jca 512 |
. 2
β’ ((πΉ(PathsβπΊ)π β§ πΉ = β
) β (πΉ(SPathsβπΊ)π β§ πΉ(CyclesβπΊ)π)) |
37 | | spthispth 28972 |
. . . 4
β’ (πΉ(SPathsβπΊ)π β πΉ(PathsβπΊ)π) |
38 | 37 | adantr 481 |
. . 3
β’ ((πΉ(SPathsβπΊ)π β§ πΉ(CyclesβπΊ)π) β πΉ(PathsβπΊ)π) |
39 | | notnot 142 |
. . . . 5
β’ (πΉ(SPathsβπΊ)π β Β¬ Β¬ πΉ(SPathsβπΊ)π) |
40 | | cyclnspth 29046 |
. . . . . . . 8
β’ (πΉ β β
β (πΉ(CyclesβπΊ)π β Β¬ πΉ(SPathsβπΊ)π)) |
41 | 40 | com12 32 |
. . . . . . 7
β’ (πΉ(CyclesβπΊ)π β (πΉ β β
β Β¬ πΉ(SPathsβπΊ)π)) |
42 | 41 | con3dimp 409 |
. . . . . 6
β’ ((πΉ(CyclesβπΊ)π β§ Β¬ Β¬ πΉ(SPathsβπΊ)π) β Β¬ πΉ β β
) |
43 | | nne 2944 |
. . . . . 6
β’ (Β¬
πΉ β β
β πΉ = β
) |
44 | 42, 43 | sylib 217 |
. . . . 5
β’ ((πΉ(CyclesβπΊ)π β§ Β¬ Β¬ πΉ(SPathsβπΊ)π) β πΉ = β
) |
45 | 39, 44 | sylan2 593 |
. . . 4
β’ ((πΉ(CyclesβπΊ)π β§ πΉ(SPathsβπΊ)π) β πΉ = β
) |
46 | 45 | ancoms 459 |
. . 3
β’ ((πΉ(SPathsβπΊ)π β§ πΉ(CyclesβπΊ)π) β πΉ = β
) |
47 | 38, 46 | jca 512 |
. 2
β’ ((πΉ(SPathsβπΊ)π β§ πΉ(CyclesβπΊ)π) β (πΉ(PathsβπΊ)π β§ πΉ = β
)) |
48 | 36, 47 | impbii 208 |
1
β’ ((πΉ(PathsβπΊ)π β§ πΉ = β
) β (πΉ(SPathsβπΊ)π β§ πΉ(CyclesβπΊ)π)) |