Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  spthcycl Structured version   Visualization version   GIF version

Theorem spthcycl 32608
Description: A walk is a trivial path if and only if it is both a simple path and a cycle. (Contributed by BTernaryTau, 8-Oct-2023.)
Assertion
Ref Expression
spthcycl ((𝐹(Paths‘𝐺)𝑃𝐹 = ∅) ↔ (𝐹(SPaths‘𝐺)𝑃𝐹(Cycles‘𝐺)𝑃))

Proof of Theorem spthcycl
StepHypRef Expression
1 pthistrl 27614 . . . 4 (𝐹(Paths‘𝐺)𝑃𝐹(Trails‘𝐺)𝑃)
2 pthiswlk 27616 . . . . 5 (𝐹(Paths‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)
3 eqid 2759 . . . . . . . 8 (Vtx‘𝐺) = (Vtx‘𝐺)
43wlkp 27506 . . . . . . 7 (𝐹(Walks‘𝐺)𝑃𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺))
54ffund 6503 . . . . . 6 (𝐹(Walks‘𝐺)𝑃 → Fun 𝑃)
6 wlklenvp1 27508 . . . . . . . . 9 (𝐹(Walks‘𝐺)𝑃 → (♯‘𝑃) = ((♯‘𝐹) + 1))
76adantr 485 . . . . . . . 8 ((𝐹(Walks‘𝐺)𝑃𝐹 = ∅) → (♯‘𝑃) = ((♯‘𝐹) + 1))
8 wlkv 27502 . . . . . . . . . . 11 (𝐹(Walks‘𝐺)𝑃 → (𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V))
98simp2d 1141 . . . . . . . . . 10 (𝐹(Walks‘𝐺)𝑃𝐹 ∈ V)
10 hasheq0 13775 . . . . . . . . . . 11 (𝐹 ∈ V → ((♯‘𝐹) = 0 ↔ 𝐹 = ∅))
1110biimpar 482 . . . . . . . . . 10 ((𝐹 ∈ V ∧ 𝐹 = ∅) → (♯‘𝐹) = 0)
129, 11sylan 584 . . . . . . . . 9 ((𝐹(Walks‘𝐺)𝑃𝐹 = ∅) → (♯‘𝐹) = 0)
13 oveq1 7158 . . . . . . . . . 10 ((♯‘𝐹) = 0 → ((♯‘𝐹) + 1) = (0 + 1))
14 0p1e1 11797 . . . . . . . . . 10 (0 + 1) = 1
1513, 14eqtrdi 2810 . . . . . . . . 9 ((♯‘𝐹) = 0 → ((♯‘𝐹) + 1) = 1)
1612, 15syl 17 . . . . . . . 8 ((𝐹(Walks‘𝐺)𝑃𝐹 = ∅) → ((♯‘𝐹) + 1) = 1)
177, 16eqtrd 2794 . . . . . . 7 ((𝐹(Walks‘𝐺)𝑃𝐹 = ∅) → (♯‘𝑃) = 1)
188simp3d 1142 . . . . . . . . 9 (𝐹(Walks‘𝐺)𝑃𝑃 ∈ V)
19 hashen1 13782 . . . . . . . . 9 (𝑃 ∈ V → ((♯‘𝑃) = 1 ↔ 𝑃 ≈ 1o))
2018, 19syl 17 . . . . . . . 8 (𝐹(Walks‘𝐺)𝑃 → ((♯‘𝑃) = 1 ↔ 𝑃 ≈ 1o))
2120biimpa 481 . . . . . . 7 ((𝐹(Walks‘𝐺)𝑃 ∧ (♯‘𝑃) = 1) → 𝑃 ≈ 1o)
2217, 21syldan 595 . . . . . 6 ((𝐹(Walks‘𝐺)𝑃𝐹 = ∅) → 𝑃 ≈ 1o)
23 funen1cnv 32586 . . . . . 6 ((Fun 𝑃𝑃 ≈ 1o) → Fun 𝑃)
245, 22, 23syl2an2r 685 . . . . 5 ((𝐹(Walks‘𝐺)𝑃𝐹 = ∅) → Fun 𝑃)
252, 24sylan 584 . . . 4 ((𝐹(Paths‘𝐺)𝑃𝐹 = ∅) → Fun 𝑃)
26 isspth 27613 . . . . 5 (𝐹(SPaths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ Fun 𝑃))
2726biimpri 231 . . . 4 ((𝐹(Trails‘𝐺)𝑃 ∧ Fun 𝑃) → 𝐹(SPaths‘𝐺)𝑃)
281, 25, 27syl2an2r 685 . . 3 ((𝐹(Paths‘𝐺)𝑃𝐹 = ∅) → 𝐹(SPaths‘𝐺)𝑃)
29 fveq2 6659 . . . . . . 7 (0 = (♯‘𝐹) → (𝑃‘0) = (𝑃‘(♯‘𝐹)))
3029eqcoms 2767 . . . . . 6 ((♯‘𝐹) = 0 → (𝑃‘0) = (𝑃‘(♯‘𝐹)))
3112, 30syl 17 . . . . 5 ((𝐹(Walks‘𝐺)𝑃𝐹 = ∅) → (𝑃‘0) = (𝑃‘(♯‘𝐹)))
322, 31sylan 584 . . . 4 ((𝐹(Paths‘𝐺)𝑃𝐹 = ∅) → (𝑃‘0) = (𝑃‘(♯‘𝐹)))
33 iscycl 27680 . . . . 5 (𝐹(Cycles‘𝐺)𝑃 ↔ (𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))))
3433biimpri 231 . . . 4 ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → 𝐹(Cycles‘𝐺)𝑃)
3532, 34syldan 595 . . 3 ((𝐹(Paths‘𝐺)𝑃𝐹 = ∅) → 𝐹(Cycles‘𝐺)𝑃)
3628, 35jca 516 . 2 ((𝐹(Paths‘𝐺)𝑃𝐹 = ∅) → (𝐹(SPaths‘𝐺)𝑃𝐹(Cycles‘𝐺)𝑃))
37 spthispth 27615 . . . 4 (𝐹(SPaths‘𝐺)𝑃𝐹(Paths‘𝐺)𝑃)
3837adantr 485 . . 3 ((𝐹(SPaths‘𝐺)𝑃𝐹(Cycles‘𝐺)𝑃) → 𝐹(Paths‘𝐺)𝑃)
39 notnot 144 . . . . 5 (𝐹(SPaths‘𝐺)𝑃 → ¬ ¬ 𝐹(SPaths‘𝐺)𝑃)
40 cyclnspth 27689 . . . . . . . 8 (𝐹 ≠ ∅ → (𝐹(Cycles‘𝐺)𝑃 → ¬ 𝐹(SPaths‘𝐺)𝑃))
4140com12 32 . . . . . . 7 (𝐹(Cycles‘𝐺)𝑃 → (𝐹 ≠ ∅ → ¬ 𝐹(SPaths‘𝐺)𝑃))
4241con3dimp 413 . . . . . 6 ((𝐹(Cycles‘𝐺)𝑃 ∧ ¬ ¬ 𝐹(SPaths‘𝐺)𝑃) → ¬ 𝐹 ≠ ∅)
43 nne 2956 . . . . . 6 𝐹 ≠ ∅ ↔ 𝐹 = ∅)
4442, 43sylib 221 . . . . 5 ((𝐹(Cycles‘𝐺)𝑃 ∧ ¬ ¬ 𝐹(SPaths‘𝐺)𝑃) → 𝐹 = ∅)
4539, 44sylan2 596 . . . 4 ((𝐹(Cycles‘𝐺)𝑃𝐹(SPaths‘𝐺)𝑃) → 𝐹 = ∅)
4645ancoms 463 . . 3 ((𝐹(SPaths‘𝐺)𝑃𝐹(Cycles‘𝐺)𝑃) → 𝐹 = ∅)
4738, 46jca 516 . 2 ((𝐹(SPaths‘𝐺)𝑃𝐹(Cycles‘𝐺)𝑃) → (𝐹(Paths‘𝐺)𝑃𝐹 = ∅))
4836, 47impbii 212 1 ((𝐹(Paths‘𝐺)𝑃𝐹 = ∅) ↔ (𝐹(SPaths‘𝐺)𝑃𝐹(Cycles‘𝐺)𝑃))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 209  wa 400   = wceq 1539  wcel 2112  wne 2952  Vcvv 3410  c0 4226   class class class wbr 5033  ccnv 5524  Fun wfun 6330  cfv 6336  (class class class)co 7151  1oc1o 8106  cen 8525  0cc0 10576  1c1 10577   + caddc 10579  ...cfz 12940  chash 13741  Vtxcvtx 26889  Walkscwlks 27486  Trailsctrls 27580  Pathscpths 27601  SPathscspths 27602  Cyclesccycls 27674
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5235  ax-pr 5299  ax-un 7460  ax-cnex 10632  ax-resscn 10633  ax-1cn 10634  ax-icn 10635  ax-addcl 10636  ax-addrcl 10637  ax-mulcl 10638  ax-mulrcl 10639  ax-mulcom 10640  ax-addass 10641  ax-mulass 10642  ax-distr 10643  ax-i2m1 10644  ax-1ne0 10645  ax-1rid 10646  ax-rnegex 10647  ax-rrecex 10648  ax-cnre 10649  ax-pre-lttri 10650  ax-pre-lttrn 10651  ax-pre-ltadd 10652  ax-pre-mulgt0 10653
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-ifp 1060  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-nel 3057  df-ral 3076  df-rex 3077  df-reu 3078  df-rab 3080  df-v 3412  df-sbc 3698  df-csb 3807  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-pss 3878  df-nul 4227  df-if 4422  df-pw 4497  df-sn 4524  df-pr 4526  df-tp 4528  df-op 4530  df-uni 4800  df-int 4840  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5431  df-eprel 5436  df-po 5444  df-so 5445  df-fr 5484  df-we 5486  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6127  df-ord 6173  df-on 6174  df-lim 6175  df-suc 6176  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7581  df-1st 7694  df-2nd 7695  df-wrecs 7958  df-recs 8019  df-rdg 8057  df-1o 8113  df-er 8300  df-map 8419  df-en 8529  df-dom 8530  df-sdom 8531  df-fin 8532  df-card 9402  df-pnf 10716  df-mnf 10717  df-xr 10718  df-ltxr 10719  df-le 10720  df-sub 10911  df-neg 10912  df-nn 11676  df-n0 11936  df-z 12022  df-uz 12284  df-fz 12941  df-fzo 13084  df-hash 13742  df-word 13915  df-wlks 27489  df-trls 27582  df-pths 27605  df-spths 27606  df-cycls 27676
This theorem is referenced by:  pthacycspth  32636
  Copyright terms: Public domain W3C validator