Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem39 Structured version   Visualization version   GIF version

Theorem stoweidlem39 46044
Description: This lemma is used to prove that there exists a function x as in the proof of Lemma 2 in [BrosowskiDeutsh] p. 91: assuming that 𝑟 is a finite subset of 𝑊, 𝑥 indexes a finite set of functions in the subalgebra (of the Stone Weierstrass theorem), such that for all i ranging in the finite indexing set, 0 ≤ xi ≤ 1, xi < ε / m on V(ti), and xi > 1 - ε / m on 𝐵. Here 𝐷 is used to represent A in the paper's Lemma 2 (because 𝐴 is used for the subalgebra), 𝑀 is used to represent m in the paper, 𝐸 is used to represent ε, and vi is used to represent V(ti). 𝑊 is just a local definition, used to shorten statements. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem39.1 𝜑
stoweidlem39.2 𝑡𝜑
stoweidlem39.3 𝑤𝜑
stoweidlem39.4 𝑈 = (𝑇𝐵)
stoweidlem39.5 𝑌 = {𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)}
stoweidlem39.6 𝑊 = {𝑤𝐽 ∣ ∀𝑒 ∈ ℝ+𝐴 (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ∧ ∀𝑡𝑤 (𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑡))}
stoweidlem39.7 (𝜑𝑟 ∈ (𝒫 𝑊 ∩ Fin))
stoweidlem39.8 (𝜑𝐷 𝑟)
stoweidlem39.9 (𝜑𝐷 ≠ ∅)
stoweidlem39.10 (𝜑𝐸 ∈ ℝ+)
stoweidlem39.11 (𝜑𝐵𝑇)
stoweidlem39.12 (𝜑𝑊 ∈ V)
stoweidlem39.13 (𝜑𝐴 ∈ V)
Assertion
Ref Expression
stoweidlem39 (𝜑 → ∃𝑚 ∈ ℕ ∃𝑣(𝑣:(1...𝑚)⟶𝑊𝐷 ran 𝑣 ∧ ∃𝑥(𝑥:(1...𝑚)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑥𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑥𝑖)‘𝑡)))))
Distinct variable groups:   𝑒,,𝑚,𝑡,𝑤   𝐴,𝑒,,𝑡,𝑤   𝑒,𝐸,,𝑡,𝑤   𝑇,𝑒,,𝑤   𝑈,𝑒,,𝑤   ,𝑖,𝑟,𝑣,𝑥,𝑚,𝑡,𝑤   𝐴,𝑖,𝑥   𝑖,𝐸,𝑥   𝑇,𝑖,𝑥   𝑈,𝑖,𝑥   𝜑,𝑖,𝑚,𝑣   𝑤,𝑌,𝑥   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥,𝑤,𝑡,𝑒,,𝑟)   𝐴(𝑣,𝑚,𝑟)   𝐵(𝑤,𝑣,𝑡,𝑒,,𝑖,𝑚,𝑟)   𝐷(𝑥,𝑤,𝑣,𝑡,𝑒,,𝑖,𝑚,𝑟)   𝑇(𝑣,𝑡,𝑚,𝑟)   𝑈(𝑣,𝑡,𝑚,𝑟)   𝐸(𝑣,𝑚,𝑟)   𝐽(𝑥,𝑤,𝑣,𝑡,𝑒,,𝑖,𝑚,𝑟)   𝑊(𝑥,𝑤,𝑣,𝑡,𝑒,,𝑖,𝑚,𝑟)   𝑌(𝑣,𝑡,𝑒,,𝑖,𝑚,𝑟)

Proof of Theorem stoweidlem39
Dummy variable 𝑏 is distinct from all other variables.
StepHypRef Expression
1 stoweidlem39.8 . . . . . . 7 (𝜑𝐷 𝑟)
2 stoweidlem39.9 . . . . . . 7 (𝜑𝐷 ≠ ∅)
31, 2jca 511 . . . . . 6 (𝜑 → (𝐷 𝑟𝐷 ≠ ∅))
4 ssn0 4370 . . . . . 6 ((𝐷 𝑟𝐷 ≠ ∅) → 𝑟 ≠ ∅)
5 unieq 4885 . . . . . . . 8 (𝑟 = ∅ → 𝑟 = ∅)
6 uni0 4902 . . . . . . . 8 ∅ = ∅
75, 6eqtrdi 2781 . . . . . . 7 (𝑟 = ∅ → 𝑟 = ∅)
87necon3i 2958 . . . . . 6 ( 𝑟 ≠ ∅ → 𝑟 ≠ ∅)
93, 4, 83syl 18 . . . . 5 (𝜑𝑟 ≠ ∅)
109neneqd 2931 . . . 4 (𝜑 → ¬ 𝑟 = ∅)
11 stoweidlem39.7 . . . . . 6 (𝜑𝑟 ∈ (𝒫 𝑊 ∩ Fin))
12 elinel2 4168 . . . . . 6 (𝑟 ∈ (𝒫 𝑊 ∩ Fin) → 𝑟 ∈ Fin)
1311, 12syl 17 . . . . 5 (𝜑𝑟 ∈ Fin)
14 fz1f1o 15683 . . . . 5 (𝑟 ∈ Fin → (𝑟 = ∅ ∨ ((♯‘𝑟) ∈ ℕ ∧ ∃𝑣 𝑣:(1...(♯‘𝑟))–1-1-onto𝑟)))
15 pm2.53 851 . . . . 5 ((𝑟 = ∅ ∨ ((♯‘𝑟) ∈ ℕ ∧ ∃𝑣 𝑣:(1...(♯‘𝑟))–1-1-onto𝑟)) → (¬ 𝑟 = ∅ → ((♯‘𝑟) ∈ ℕ ∧ ∃𝑣 𝑣:(1...(♯‘𝑟))–1-1-onto𝑟)))
1613, 14, 153syl 18 . . . 4 (𝜑 → (¬ 𝑟 = ∅ → ((♯‘𝑟) ∈ ℕ ∧ ∃𝑣 𝑣:(1...(♯‘𝑟))–1-1-onto𝑟)))
1710, 16mpd 15 . . 3 (𝜑 → ((♯‘𝑟) ∈ ℕ ∧ ∃𝑣 𝑣:(1...(♯‘𝑟))–1-1-onto𝑟))
18 oveq2 7398 . . . . . 6 (𝑚 = (♯‘𝑟) → (1...𝑚) = (1...(♯‘𝑟)))
1918f1oeq2d 6799 . . . . 5 (𝑚 = (♯‘𝑟) → (𝑣:(1...𝑚)–1-1-onto𝑟𝑣:(1...(♯‘𝑟))–1-1-onto𝑟))
2019exbidv 1921 . . . 4 (𝑚 = (♯‘𝑟) → (∃𝑣 𝑣:(1...𝑚)–1-1-onto𝑟 ↔ ∃𝑣 𝑣:(1...(♯‘𝑟))–1-1-onto𝑟))
2120rspcev 3591 . . 3 (((♯‘𝑟) ∈ ℕ ∧ ∃𝑣 𝑣:(1...(♯‘𝑟))–1-1-onto𝑟) → ∃𝑚 ∈ ℕ ∃𝑣 𝑣:(1...𝑚)–1-1-onto𝑟)
2217, 21syl 17 . 2 (𝜑 → ∃𝑚 ∈ ℕ ∃𝑣 𝑣:(1...𝑚)–1-1-onto𝑟)
23 f1of 6803 . . . . . . . 8 (𝑣:(1...𝑚)–1-1-onto𝑟𝑣:(1...𝑚)⟶𝑟)
2423adantl 481 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ 𝑣:(1...𝑚)–1-1-onto𝑟) → 𝑣:(1...𝑚)⟶𝑟)
25 simpll 766 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ) ∧ 𝑣:(1...𝑚)–1-1-onto𝑟) → 𝜑)
26 elinel1 4167 . . . . . . . . 9 (𝑟 ∈ (𝒫 𝑊 ∩ Fin) → 𝑟 ∈ 𝒫 𝑊)
2726elpwid 4575 . . . . . . . 8 (𝑟 ∈ (𝒫 𝑊 ∩ Fin) → 𝑟𝑊)
2825, 11, 273syl 18 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ 𝑣:(1...𝑚)–1-1-onto𝑟) → 𝑟𝑊)
2924, 28fssd 6708 . . . . . 6 (((𝜑𝑚 ∈ ℕ) ∧ 𝑣:(1...𝑚)–1-1-onto𝑟) → 𝑣:(1...𝑚)⟶𝑊)
301ad2antrr 726 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ 𝑣:(1...𝑚)–1-1-onto𝑟) → 𝐷 𝑟)
31 dff1o2 6808 . . . . . . . . . 10 (𝑣:(1...𝑚)–1-1-onto𝑟 ↔ (𝑣 Fn (1...𝑚) ∧ Fun 𝑣 ∧ ran 𝑣 = 𝑟))
3231simp3bi 1147 . . . . . . . . 9 (𝑣:(1...𝑚)–1-1-onto𝑟 → ran 𝑣 = 𝑟)
3332unieqd 4887 . . . . . . . 8 (𝑣:(1...𝑚)–1-1-onto𝑟 ran 𝑣 = 𝑟)
3433adantl 481 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ 𝑣:(1...𝑚)–1-1-onto𝑟) → ran 𝑣 = 𝑟)
3530, 34sseqtrrd 3987 . . . . . 6 (((𝜑𝑚 ∈ ℕ) ∧ 𝑣:(1...𝑚)–1-1-onto𝑟) → 𝐷 ran 𝑣)
36 stoweidlem39.1 . . . . . . . . 9 𝜑
37 nfv 1914 . . . . . . . . 9 𝑚 ∈ ℕ
3836, 37nfan 1899 . . . . . . . 8 (𝜑𝑚 ∈ ℕ)
39 nfv 1914 . . . . . . . 8 𝑣:(1...𝑚)–1-1-onto𝑟
4038, 39nfan 1899 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) ∧ 𝑣:(1...𝑚)–1-1-onto𝑟)
41 stoweidlem39.2 . . . . . . . . 9 𝑡𝜑
42 nfv 1914 . . . . . . . . 9 𝑡 𝑚 ∈ ℕ
4341, 42nfan 1899 . . . . . . . 8 𝑡(𝜑𝑚 ∈ ℕ)
44 nfv 1914 . . . . . . . 8 𝑡 𝑣:(1...𝑚)–1-1-onto𝑟
4543, 44nfan 1899 . . . . . . 7 𝑡((𝜑𝑚 ∈ ℕ) ∧ 𝑣:(1...𝑚)–1-1-onto𝑟)
46 stoweidlem39.3 . . . . . . . . 9 𝑤𝜑
47 nfv 1914 . . . . . . . . 9 𝑤 𝑚 ∈ ℕ
4846, 47nfan 1899 . . . . . . . 8 𝑤(𝜑𝑚 ∈ ℕ)
49 nfv 1914 . . . . . . . 8 𝑤 𝑣:(1...𝑚)–1-1-onto𝑟
5048, 49nfan 1899 . . . . . . 7 𝑤((𝜑𝑚 ∈ ℕ) ∧ 𝑣:(1...𝑚)–1-1-onto𝑟)
51 stoweidlem39.5 . . . . . . 7 𝑌 = {𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)}
52 stoweidlem39.6 . . . . . . 7 𝑊 = {𝑤𝐽 ∣ ∀𝑒 ∈ ℝ+𝐴 (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ∧ ∀𝑡𝑤 (𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑡))}
53 eqid 2730 . . . . . . 7 (𝑤𝑟 ↦ {𝐴 ∣ (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ∧ ∀𝑡𝑤 (𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − (𝐸 / 𝑚)) < (𝑡))}) = (𝑤𝑟 ↦ {𝐴 ∣ (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ∧ ∀𝑡𝑤 (𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − (𝐸 / 𝑚)) < (𝑡))})
54 simplr 768 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ 𝑣:(1...𝑚)–1-1-onto𝑟) → 𝑚 ∈ ℕ)
55 simpr 484 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ 𝑣:(1...𝑚)–1-1-onto𝑟) → 𝑣:(1...𝑚)–1-1-onto𝑟)
56 stoweidlem39.10 . . . . . . . 8 (𝜑𝐸 ∈ ℝ+)
5756ad2antrr 726 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ 𝑣:(1...𝑚)–1-1-onto𝑟) → 𝐸 ∈ ℝ+)
58 stoweidlem39.11 . . . . . . . . . . . 12 (𝜑𝐵𝑇)
5958sselda 3949 . . . . . . . . . . 11 ((𝜑𝑏𝐵) → 𝑏𝑇)
60 notnot 142 . . . . . . . . . . . . . . 15 (𝑏𝐵 → ¬ ¬ 𝑏𝐵)
6160intnand 488 . . . . . . . . . . . . . 14 (𝑏𝐵 → ¬ (𝑏𝑇 ∧ ¬ 𝑏𝐵))
6261adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑏𝐵) → ¬ (𝑏𝑇 ∧ ¬ 𝑏𝐵))
63 eldif 3927 . . . . . . . . . . . . 13 (𝑏 ∈ (𝑇𝐵) ↔ (𝑏𝑇 ∧ ¬ 𝑏𝐵))
6462, 63sylnibr 329 . . . . . . . . . . . 12 ((𝜑𝑏𝐵) → ¬ 𝑏 ∈ (𝑇𝐵))
65 stoweidlem39.4 . . . . . . . . . . . . 13 𝑈 = (𝑇𝐵)
6665eleq2i 2821 . . . . . . . . . . . 12 (𝑏𝑈𝑏 ∈ (𝑇𝐵))
6764, 66sylnibr 329 . . . . . . . . . . 11 ((𝜑𝑏𝐵) → ¬ 𝑏𝑈)
6859, 67eldifd 3928 . . . . . . . . . 10 ((𝜑𝑏𝐵) → 𝑏 ∈ (𝑇𝑈))
6968ralrimiva 3126 . . . . . . . . 9 (𝜑 → ∀𝑏𝐵 𝑏 ∈ (𝑇𝑈))
70 dfss3 3938 . . . . . . . . 9 (𝐵 ⊆ (𝑇𝑈) ↔ ∀𝑏𝐵 𝑏 ∈ (𝑇𝑈))
7169, 70sylibr 234 . . . . . . . 8 (𝜑𝐵 ⊆ (𝑇𝑈))
7271ad2antrr 726 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ 𝑣:(1...𝑚)–1-1-onto𝑟) → 𝐵 ⊆ (𝑇𝑈))
73 stoweidlem39.12 . . . . . . . 8 (𝜑𝑊 ∈ V)
7473ad2antrr 726 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ 𝑣:(1...𝑚)–1-1-onto𝑟) → 𝑊 ∈ V)
75 stoweidlem39.13 . . . . . . . 8 (𝜑𝐴 ∈ V)
7675ad2antrr 726 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ 𝑣:(1...𝑚)–1-1-onto𝑟) → 𝐴 ∈ V)
7713ad2antrr 726 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ) ∧ 𝑣:(1...𝑚)–1-1-onto𝑟) → 𝑟 ∈ Fin)
78 mptfi 9309 . . . . . . . 8 (𝑟 ∈ Fin → (𝑤𝑟 ↦ {𝐴 ∣ (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ∧ ∀𝑡𝑤 (𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − (𝐸 / 𝑚)) < (𝑡))}) ∈ Fin)
79 rnfi 9298 . . . . . . . 8 ((𝑤𝑟 ↦ {𝐴 ∣ (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ∧ ∀𝑡𝑤 (𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − (𝐸 / 𝑚)) < (𝑡))}) ∈ Fin → ran (𝑤𝑟 ↦ {𝐴 ∣ (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ∧ ∀𝑡𝑤 (𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − (𝐸 / 𝑚)) < (𝑡))}) ∈ Fin)
8077, 78, 793syl 18 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ 𝑣:(1...𝑚)–1-1-onto𝑟) → ran (𝑤𝑟 ↦ {𝐴 ∣ (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ∧ ∀𝑡𝑤 (𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − (𝐸 / 𝑚)) < (𝑡))}) ∈ Fin)
8140, 45, 50, 51, 52, 53, 28, 54, 55, 57, 72, 74, 76, 80stoweidlem31 46036 . . . . . 6 (((𝜑𝑚 ∈ ℕ) ∧ 𝑣:(1...𝑚)–1-1-onto𝑟) → ∃𝑥(𝑥:(1...𝑚)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑥𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑥𝑖)‘𝑡))))
8229, 35, 813jca 1128 . . . . 5 (((𝜑𝑚 ∈ ℕ) ∧ 𝑣:(1...𝑚)–1-1-onto𝑟) → (𝑣:(1...𝑚)⟶𝑊𝐷 ran 𝑣 ∧ ∃𝑥(𝑥:(1...𝑚)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑥𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑥𝑖)‘𝑡)))))
8382ex 412 . . . 4 ((𝜑𝑚 ∈ ℕ) → (𝑣:(1...𝑚)–1-1-onto𝑟 → (𝑣:(1...𝑚)⟶𝑊𝐷 ran 𝑣 ∧ ∃𝑥(𝑥:(1...𝑚)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑥𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑥𝑖)‘𝑡))))))
8483eximdv 1917 . . 3 ((𝜑𝑚 ∈ ℕ) → (∃𝑣 𝑣:(1...𝑚)–1-1-onto𝑟 → ∃𝑣(𝑣:(1...𝑚)⟶𝑊𝐷 ran 𝑣 ∧ ∃𝑥(𝑥:(1...𝑚)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑥𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑥𝑖)‘𝑡))))))
8584reximdva 3147 . 2 (𝜑 → (∃𝑚 ∈ ℕ ∃𝑣 𝑣:(1...𝑚)–1-1-onto𝑟 → ∃𝑚 ∈ ℕ ∃𝑣(𝑣:(1...𝑚)⟶𝑊𝐷 ran 𝑣 ∧ ∃𝑥(𝑥:(1...𝑚)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑥𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑥𝑖)‘𝑡))))))
8622, 85mpd 15 1 (𝜑 → ∃𝑚 ∈ ℕ ∃𝑣(𝑣:(1...𝑚)⟶𝑊𝐷 ran 𝑣 ∧ ∃𝑥(𝑥:(1...𝑚)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑥𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑥𝑖)‘𝑡)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847  w3a 1086   = wceq 1540  wex 1779  wnf 1783  wcel 2109  wne 2926  wral 3045  wrex 3054  {crab 3408  Vcvv 3450  cdif 3914  cin 3916  wss 3917  c0 4299  𝒫 cpw 4566   cuni 4874   class class class wbr 5110  cmpt 5191  ccnv 5640  ran crn 5642  Fun wfun 6508   Fn wfn 6509  wf 6510  1-1-ontowf1o 6513  cfv 6514  (class class class)co 7390  Fincfn 8921  0cc0 11075  1c1 11076   < clt 11215  cle 11216  cmin 11412   / cdiv 11842  cn 12193  +crp 12958  ...cfz 13475  chash 14302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-fz 13476  df-hash 14303
This theorem is referenced by:  stoweidlem57  46062
  Copyright terms: Public domain W3C validator