Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem39 Structured version   Visualization version   GIF version

Theorem stoweidlem39 41756
Description: This lemma is used to prove that there exists a function x as in the proof of Lemma 2 in [BrosowskiDeutsh] p. 91: assuming that 𝑟 is a finite subset of 𝑊, 𝑥 indexes a finite set of functions in the subalgebra (of the Stone Weierstrass theorem), such that for all i ranging in the finite indexing set, 0 ≤ xi ≤ 1, xi < ε / m on V(ti), and xi > 1 - ε / m on 𝐵. Here 𝐷 is used to represent A in the paper's Lemma 2 (because 𝐴 is used for the subalgebra), 𝑀 is used to represent m in the paper, 𝐸 is used to represent ε, and vi is used to represent V(ti). 𝑊 is just a local definition, used to shorten statements. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem39.1 𝜑
stoweidlem39.2 𝑡𝜑
stoweidlem39.3 𝑤𝜑
stoweidlem39.4 𝑈 = (𝑇𝐵)
stoweidlem39.5 𝑌 = {𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)}
stoweidlem39.6 𝑊 = {𝑤𝐽 ∣ ∀𝑒 ∈ ℝ+𝐴 (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ∧ ∀𝑡𝑤 (𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑡))}
stoweidlem39.7 (𝜑𝑟 ∈ (𝒫 𝑊 ∩ Fin))
stoweidlem39.8 (𝜑𝐷 𝑟)
stoweidlem39.9 (𝜑𝐷 ≠ ∅)
stoweidlem39.10 (𝜑𝐸 ∈ ℝ+)
stoweidlem39.11 (𝜑𝐵𝑇)
stoweidlem39.12 (𝜑𝑊 ∈ V)
stoweidlem39.13 (𝜑𝐴 ∈ V)
Assertion
Ref Expression
stoweidlem39 (𝜑 → ∃𝑚 ∈ ℕ ∃𝑣(𝑣:(1...𝑚)⟶𝑊𝐷 ran 𝑣 ∧ ∃𝑥(𝑥:(1...𝑚)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑥𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑥𝑖)‘𝑡)))))
Distinct variable groups:   𝑒,,𝑚,𝑡,𝑤   𝐴,𝑒,,𝑡,𝑤   𝑒,𝐸,,𝑡,𝑤   𝑇,𝑒,,𝑤   𝑈,𝑒,,𝑤   ,𝑖,𝑟,𝑣,𝑥,𝑚,𝑡,𝑤   𝐴,𝑖,𝑥   𝑖,𝐸,𝑥   𝑇,𝑖,𝑥   𝑈,𝑖,𝑥   𝜑,𝑖,𝑚,𝑣   𝑤,𝑌,𝑥   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥,𝑤,𝑡,𝑒,,𝑟)   𝐴(𝑣,𝑚,𝑟)   𝐵(𝑤,𝑣,𝑡,𝑒,,𝑖,𝑚,𝑟)   𝐷(𝑥,𝑤,𝑣,𝑡,𝑒,,𝑖,𝑚,𝑟)   𝑇(𝑣,𝑡,𝑚,𝑟)   𝑈(𝑣,𝑡,𝑚,𝑟)   𝐸(𝑣,𝑚,𝑟)   𝐽(𝑥,𝑤,𝑣,𝑡,𝑒,,𝑖,𝑚,𝑟)   𝑊(𝑥,𝑤,𝑣,𝑡,𝑒,,𝑖,𝑚,𝑟)   𝑌(𝑣,𝑡,𝑒,,𝑖,𝑚,𝑟)

Proof of Theorem stoweidlem39
Dummy variable 𝑏 is distinct from all other variables.
StepHypRef Expression
1 stoweidlem39.8 . . . . . . 7 (𝜑𝐷 𝑟)
2 stoweidlem39.9 . . . . . . 7 (𝜑𝐷 ≠ ∅)
31, 2jca 504 . . . . . 6 (𝜑 → (𝐷 𝑟𝐷 ≠ ∅))
4 ssn0 4241 . . . . . 6 ((𝐷 𝑟𝐷 ≠ ∅) → 𝑟 ≠ ∅)
5 unieq 4721 . . . . . . . 8 (𝑟 = ∅ → 𝑟 = ∅)
6 uni0 4740 . . . . . . . 8 ∅ = ∅
75, 6syl6eq 2830 . . . . . . 7 (𝑟 = ∅ → 𝑟 = ∅)
87necon3i 2999 . . . . . 6 ( 𝑟 ≠ ∅ → 𝑟 ≠ ∅)
93, 4, 83syl 18 . . . . 5 (𝜑𝑟 ≠ ∅)
109neneqd 2972 . . . 4 (𝜑 → ¬ 𝑟 = ∅)
11 stoweidlem39.7 . . . . . 6 (𝜑𝑟 ∈ (𝒫 𝑊 ∩ Fin))
12 elinel2 4063 . . . . . 6 (𝑟 ∈ (𝒫 𝑊 ∩ Fin) → 𝑟 ∈ Fin)
1311, 12syl 17 . . . . 5 (𝜑𝑟 ∈ Fin)
14 fz1f1o 14930 . . . . 5 (𝑟 ∈ Fin → (𝑟 = ∅ ∨ ((♯‘𝑟) ∈ ℕ ∧ ∃𝑣 𝑣:(1...(♯‘𝑟))–1-1-onto𝑟)))
15 pm2.53 837 . . . . 5 ((𝑟 = ∅ ∨ ((♯‘𝑟) ∈ ℕ ∧ ∃𝑣 𝑣:(1...(♯‘𝑟))–1-1-onto𝑟)) → (¬ 𝑟 = ∅ → ((♯‘𝑟) ∈ ℕ ∧ ∃𝑣 𝑣:(1...(♯‘𝑟))–1-1-onto𝑟)))
1613, 14, 153syl 18 . . . 4 (𝜑 → (¬ 𝑟 = ∅ → ((♯‘𝑟) ∈ ℕ ∧ ∃𝑣 𝑣:(1...(♯‘𝑟))–1-1-onto𝑟)))
1710, 16mpd 15 . . 3 (𝜑 → ((♯‘𝑟) ∈ ℕ ∧ ∃𝑣 𝑣:(1...(♯‘𝑟))–1-1-onto𝑟))
18 oveq2 6986 . . . . . 6 (𝑚 = (♯‘𝑟) → (1...𝑚) = (1...(♯‘𝑟)))
1918f1oeq2d 6442 . . . . 5 (𝑚 = (♯‘𝑟) → (𝑣:(1...𝑚)–1-1-onto𝑟𝑣:(1...(♯‘𝑟))–1-1-onto𝑟))
2019exbidv 1880 . . . 4 (𝑚 = (♯‘𝑟) → (∃𝑣 𝑣:(1...𝑚)–1-1-onto𝑟 ↔ ∃𝑣 𝑣:(1...(♯‘𝑟))–1-1-onto𝑟))
2120rspcev 3535 . . 3 (((♯‘𝑟) ∈ ℕ ∧ ∃𝑣 𝑣:(1...(♯‘𝑟))–1-1-onto𝑟) → ∃𝑚 ∈ ℕ ∃𝑣 𝑣:(1...𝑚)–1-1-onto𝑟)
2217, 21syl 17 . 2 (𝜑 → ∃𝑚 ∈ ℕ ∃𝑣 𝑣:(1...𝑚)–1-1-onto𝑟)
23 f1of 6446 . . . . . . . 8 (𝑣:(1...𝑚)–1-1-onto𝑟𝑣:(1...𝑚)⟶𝑟)
2423adantl 474 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ 𝑣:(1...𝑚)–1-1-onto𝑟) → 𝑣:(1...𝑚)⟶𝑟)
25 simpll 754 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ) ∧ 𝑣:(1...𝑚)–1-1-onto𝑟) → 𝜑)
26 elinel1 4062 . . . . . . . . 9 (𝑟 ∈ (𝒫 𝑊 ∩ Fin) → 𝑟 ∈ 𝒫 𝑊)
2726elpwid 4435 . . . . . . . 8 (𝑟 ∈ (𝒫 𝑊 ∩ Fin) → 𝑟𝑊)
2825, 11, 273syl 18 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ 𝑣:(1...𝑚)–1-1-onto𝑟) → 𝑟𝑊)
2924, 28fssd 6360 . . . . . 6 (((𝜑𝑚 ∈ ℕ) ∧ 𝑣:(1...𝑚)–1-1-onto𝑟) → 𝑣:(1...𝑚)⟶𝑊)
301ad2antrr 713 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ 𝑣:(1...𝑚)–1-1-onto𝑟) → 𝐷 𝑟)
31 dff1o2 6451 . . . . . . . . . 10 (𝑣:(1...𝑚)–1-1-onto𝑟 ↔ (𝑣 Fn (1...𝑚) ∧ Fun 𝑣 ∧ ran 𝑣 = 𝑟))
3231simp3bi 1127 . . . . . . . . 9 (𝑣:(1...𝑚)–1-1-onto𝑟 → ran 𝑣 = 𝑟)
3332unieqd 4723 . . . . . . . 8 (𝑣:(1...𝑚)–1-1-onto𝑟 ran 𝑣 = 𝑟)
3433adantl 474 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ 𝑣:(1...𝑚)–1-1-onto𝑟) → ran 𝑣 = 𝑟)
3530, 34sseqtr4d 3900 . . . . . 6 (((𝜑𝑚 ∈ ℕ) ∧ 𝑣:(1...𝑚)–1-1-onto𝑟) → 𝐷 ran 𝑣)
36 stoweidlem39.1 . . . . . . . . 9 𝜑
37 nfv 1873 . . . . . . . . 9 𝑚 ∈ ℕ
3836, 37nfan 1862 . . . . . . . 8 (𝜑𝑚 ∈ ℕ)
39 nfv 1873 . . . . . . . 8 𝑣:(1...𝑚)–1-1-onto𝑟
4038, 39nfan 1862 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) ∧ 𝑣:(1...𝑚)–1-1-onto𝑟)
41 stoweidlem39.2 . . . . . . . . 9 𝑡𝜑
42 nfv 1873 . . . . . . . . 9 𝑡 𝑚 ∈ ℕ
4341, 42nfan 1862 . . . . . . . 8 𝑡(𝜑𝑚 ∈ ℕ)
44 nfv 1873 . . . . . . . 8 𝑡 𝑣:(1...𝑚)–1-1-onto𝑟
4543, 44nfan 1862 . . . . . . 7 𝑡((𝜑𝑚 ∈ ℕ) ∧ 𝑣:(1...𝑚)–1-1-onto𝑟)
46 stoweidlem39.3 . . . . . . . . 9 𝑤𝜑
47 nfv 1873 . . . . . . . . 9 𝑤 𝑚 ∈ ℕ
4846, 47nfan 1862 . . . . . . . 8 𝑤(𝜑𝑚 ∈ ℕ)
49 nfv 1873 . . . . . . . 8 𝑤 𝑣:(1...𝑚)–1-1-onto𝑟
5048, 49nfan 1862 . . . . . . 7 𝑤((𝜑𝑚 ∈ ℕ) ∧ 𝑣:(1...𝑚)–1-1-onto𝑟)
51 stoweidlem39.5 . . . . . . 7 𝑌 = {𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)}
52 stoweidlem39.6 . . . . . . 7 𝑊 = {𝑤𝐽 ∣ ∀𝑒 ∈ ℝ+𝐴 (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ∧ ∀𝑡𝑤 (𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑡))}
53 eqid 2778 . . . . . . 7 (𝑤𝑟 ↦ {𝐴 ∣ (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ∧ ∀𝑡𝑤 (𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − (𝐸 / 𝑚)) < (𝑡))}) = (𝑤𝑟 ↦ {𝐴 ∣ (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ∧ ∀𝑡𝑤 (𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − (𝐸 / 𝑚)) < (𝑡))})
54 simplr 756 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ 𝑣:(1...𝑚)–1-1-onto𝑟) → 𝑚 ∈ ℕ)
55 simpr 477 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ 𝑣:(1...𝑚)–1-1-onto𝑟) → 𝑣:(1...𝑚)–1-1-onto𝑟)
56 stoweidlem39.10 . . . . . . . 8 (𝜑𝐸 ∈ ℝ+)
5756ad2antrr 713 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ 𝑣:(1...𝑚)–1-1-onto𝑟) → 𝐸 ∈ ℝ+)
58 stoweidlem39.11 . . . . . . . . . . . 12 (𝜑𝐵𝑇)
5958sselda 3860 . . . . . . . . . . 11 ((𝜑𝑏𝐵) → 𝑏𝑇)
60 notnot 139 . . . . . . . . . . . . . . 15 (𝑏𝐵 → ¬ ¬ 𝑏𝐵)
6160intnand 481 . . . . . . . . . . . . . 14 (𝑏𝐵 → ¬ (𝑏𝑇 ∧ ¬ 𝑏𝐵))
6261adantl 474 . . . . . . . . . . . . 13 ((𝜑𝑏𝐵) → ¬ (𝑏𝑇 ∧ ¬ 𝑏𝐵))
63 eldif 3841 . . . . . . . . . . . . 13 (𝑏 ∈ (𝑇𝐵) ↔ (𝑏𝑇 ∧ ¬ 𝑏𝐵))
6462, 63sylnibr 321 . . . . . . . . . . . 12 ((𝜑𝑏𝐵) → ¬ 𝑏 ∈ (𝑇𝐵))
65 stoweidlem39.4 . . . . . . . . . . . . 13 𝑈 = (𝑇𝐵)
6665eleq2i 2857 . . . . . . . . . . . 12 (𝑏𝑈𝑏 ∈ (𝑇𝐵))
6764, 66sylnibr 321 . . . . . . . . . . 11 ((𝜑𝑏𝐵) → ¬ 𝑏𝑈)
6859, 67eldifd 3842 . . . . . . . . . 10 ((𝜑𝑏𝐵) → 𝑏 ∈ (𝑇𝑈))
6968ralrimiva 3132 . . . . . . . . 9 (𝜑 → ∀𝑏𝐵 𝑏 ∈ (𝑇𝑈))
70 dfss3 3849 . . . . . . . . 9 (𝐵 ⊆ (𝑇𝑈) ↔ ∀𝑏𝐵 𝑏 ∈ (𝑇𝑈))
7169, 70sylibr 226 . . . . . . . 8 (𝜑𝐵 ⊆ (𝑇𝑈))
7271ad2antrr 713 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ 𝑣:(1...𝑚)–1-1-onto𝑟) → 𝐵 ⊆ (𝑇𝑈))
73 stoweidlem39.12 . . . . . . . 8 (𝜑𝑊 ∈ V)
7473ad2antrr 713 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ 𝑣:(1...𝑚)–1-1-onto𝑟) → 𝑊 ∈ V)
75 stoweidlem39.13 . . . . . . . 8 (𝜑𝐴 ∈ V)
7675ad2antrr 713 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ 𝑣:(1...𝑚)–1-1-onto𝑟) → 𝐴 ∈ V)
7713ad2antrr 713 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ) ∧ 𝑣:(1...𝑚)–1-1-onto𝑟) → 𝑟 ∈ Fin)
78 mptfi 8620 . . . . . . . 8 (𝑟 ∈ Fin → (𝑤𝑟 ↦ {𝐴 ∣ (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ∧ ∀𝑡𝑤 (𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − (𝐸 / 𝑚)) < (𝑡))}) ∈ Fin)
79 rnfi 8604 . . . . . . . 8 ((𝑤𝑟 ↦ {𝐴 ∣ (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ∧ ∀𝑡𝑤 (𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − (𝐸 / 𝑚)) < (𝑡))}) ∈ Fin → ran (𝑤𝑟 ↦ {𝐴 ∣ (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ∧ ∀𝑡𝑤 (𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − (𝐸 / 𝑚)) < (𝑡))}) ∈ Fin)
8077, 78, 793syl 18 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ 𝑣:(1...𝑚)–1-1-onto𝑟) → ran (𝑤𝑟 ↦ {𝐴 ∣ (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ∧ ∀𝑡𝑤 (𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − (𝐸 / 𝑚)) < (𝑡))}) ∈ Fin)
8140, 45, 50, 51, 52, 53, 28, 54, 55, 57, 72, 74, 76, 80stoweidlem31 41748 . . . . . 6 (((𝜑𝑚 ∈ ℕ) ∧ 𝑣:(1...𝑚)–1-1-onto𝑟) → ∃𝑥(𝑥:(1...𝑚)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑥𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑥𝑖)‘𝑡))))
8229, 35, 813jca 1108 . . . . 5 (((𝜑𝑚 ∈ ℕ) ∧ 𝑣:(1...𝑚)–1-1-onto𝑟) → (𝑣:(1...𝑚)⟶𝑊𝐷 ran 𝑣 ∧ ∃𝑥(𝑥:(1...𝑚)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑥𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑥𝑖)‘𝑡)))))
8382ex 405 . . . 4 ((𝜑𝑚 ∈ ℕ) → (𝑣:(1...𝑚)–1-1-onto𝑟 → (𝑣:(1...𝑚)⟶𝑊𝐷 ran 𝑣 ∧ ∃𝑥(𝑥:(1...𝑚)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑥𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑥𝑖)‘𝑡))))))
8483eximdv 1876 . . 3 ((𝜑𝑚 ∈ ℕ) → (∃𝑣 𝑣:(1...𝑚)–1-1-onto𝑟 → ∃𝑣(𝑣:(1...𝑚)⟶𝑊𝐷 ran 𝑣 ∧ ∃𝑥(𝑥:(1...𝑚)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑥𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑥𝑖)‘𝑡))))))
8584reximdva 3219 . 2 (𝜑 → (∃𝑚 ∈ ℕ ∃𝑣 𝑣:(1...𝑚)–1-1-onto𝑟 → ∃𝑚 ∈ ℕ ∃𝑣(𝑣:(1...𝑚)⟶𝑊𝐷 ran 𝑣 ∧ ∃𝑥(𝑥:(1...𝑚)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑥𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑥𝑖)‘𝑡))))))
8622, 85mpd 15 1 (𝜑 → ∃𝑚 ∈ ℕ ∃𝑣(𝑣:(1...𝑚)⟶𝑊𝐷 ran 𝑣 ∧ ∃𝑥(𝑥:(1...𝑚)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑥𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑥𝑖)‘𝑡)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 387  wo 833  w3a 1068   = wceq 1507  wex 1742  wnf 1746  wcel 2050  wne 2967  wral 3088  wrex 3089  {crab 3092  Vcvv 3415  cdif 3828  cin 3830  wss 3831  c0 4180  𝒫 cpw 4423   cuni 4713   class class class wbr 4930  cmpt 5009  ccnv 5407  ran crn 5409  Fun wfun 6184   Fn wfn 6185  wf 6186  1-1-ontowf1o 6189  cfv 6190  (class class class)co 6978  Fincfn 8308  0cc0 10337  1c1 10338   < clt 10476  cle 10477  cmin 10672   / cdiv 11100  cn 11441  +crp 12207  ...cfz 12711  chash 13508
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-rep 5050  ax-sep 5061  ax-nul 5068  ax-pow 5120  ax-pr 5187  ax-un 7281  ax-cnex 10393  ax-resscn 10394  ax-1cn 10395  ax-icn 10396  ax-addcl 10397  ax-addrcl 10398  ax-mulcl 10399  ax-mulrcl 10400  ax-mulcom 10401  ax-addass 10402  ax-mulass 10403  ax-distr 10404  ax-i2m1 10405  ax-1ne0 10406  ax-1rid 10407  ax-rnegex 10408  ax-rrecex 10409  ax-cnre 10410  ax-pre-lttri 10411  ax-pre-lttrn 10412  ax-pre-ltadd 10413  ax-pre-mulgt0 10414
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2583  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-nel 3074  df-ral 3093  df-rex 3094  df-reu 3095  df-rmo 3096  df-rab 3097  df-v 3417  df-sbc 3684  df-csb 3789  df-dif 3834  df-un 3836  df-in 3838  df-ss 3845  df-pss 3847  df-nul 4181  df-if 4352  df-pw 4425  df-sn 4443  df-pr 4445  df-tp 4447  df-op 4449  df-uni 4714  df-int 4751  df-iun 4795  df-br 4931  df-opab 4993  df-mpt 5010  df-tr 5032  df-id 5313  df-eprel 5318  df-po 5327  df-so 5328  df-fr 5367  df-we 5369  df-xp 5414  df-rel 5415  df-cnv 5416  df-co 5417  df-dm 5418  df-rn 5419  df-res 5420  df-ima 5421  df-pred 5988  df-ord 6034  df-on 6035  df-lim 6036  df-suc 6037  df-iota 6154  df-fun 6192  df-fn 6193  df-f 6194  df-f1 6195  df-fo 6196  df-f1o 6197  df-fv 6198  df-riota 6939  df-ov 6981  df-oprab 6982  df-mpo 6983  df-om 7399  df-1st 7503  df-2nd 7504  df-wrecs 7752  df-recs 7814  df-rdg 7852  df-1o 7907  df-oadd 7911  df-er 8091  df-en 8309  df-dom 8310  df-sdom 8311  df-fin 8312  df-card 9164  df-pnf 10478  df-mnf 10479  df-xr 10480  df-ltxr 10481  df-le 10482  df-sub 10674  df-neg 10675  df-div 11101  df-nn 11442  df-n0 11711  df-z 11797  df-uz 12062  df-rp 12208  df-fz 12712  df-hash 13509
This theorem is referenced by:  stoweidlem57  41774
  Copyright terms: Public domain W3C validator