Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem39 Structured version   Visualization version   GIF version

Theorem stoweidlem39 43580
Description: This lemma is used to prove that there exists a function x as in the proof of Lemma 2 in [BrosowskiDeutsh] p. 91: assuming that 𝑟 is a finite subset of 𝑊, 𝑥 indexes a finite set of functions in the subalgebra (of the Stone Weierstrass theorem), such that for all i ranging in the finite indexing set, 0 ≤ xi ≤ 1, xi < ε / m on V(ti), and xi > 1 - ε / m on 𝐵. Here 𝐷 is used to represent A in the paper's Lemma 2 (because 𝐴 is used for the subalgebra), 𝑀 is used to represent m in the paper, 𝐸 is used to represent ε, and vi is used to represent V(ti). 𝑊 is just a local definition, used to shorten statements. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem39.1 𝜑
stoweidlem39.2 𝑡𝜑
stoweidlem39.3 𝑤𝜑
stoweidlem39.4 𝑈 = (𝑇𝐵)
stoweidlem39.5 𝑌 = {𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)}
stoweidlem39.6 𝑊 = {𝑤𝐽 ∣ ∀𝑒 ∈ ℝ+𝐴 (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ∧ ∀𝑡𝑤 (𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑡))}
stoweidlem39.7 (𝜑𝑟 ∈ (𝒫 𝑊 ∩ Fin))
stoweidlem39.8 (𝜑𝐷 𝑟)
stoweidlem39.9 (𝜑𝐷 ≠ ∅)
stoweidlem39.10 (𝜑𝐸 ∈ ℝ+)
stoweidlem39.11 (𝜑𝐵𝑇)
stoweidlem39.12 (𝜑𝑊 ∈ V)
stoweidlem39.13 (𝜑𝐴 ∈ V)
Assertion
Ref Expression
stoweidlem39 (𝜑 → ∃𝑚 ∈ ℕ ∃𝑣(𝑣:(1...𝑚)⟶𝑊𝐷 ran 𝑣 ∧ ∃𝑥(𝑥:(1...𝑚)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑥𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑥𝑖)‘𝑡)))))
Distinct variable groups:   𝑒,,𝑚,𝑡,𝑤   𝐴,𝑒,,𝑡,𝑤   𝑒,𝐸,,𝑡,𝑤   𝑇,𝑒,,𝑤   𝑈,𝑒,,𝑤   ,𝑖,𝑟,𝑣,𝑥,𝑚,𝑡,𝑤   𝐴,𝑖,𝑥   𝑖,𝐸,𝑥   𝑇,𝑖,𝑥   𝑈,𝑖,𝑥   𝜑,𝑖,𝑚,𝑣   𝑤,𝑌,𝑥   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥,𝑤,𝑡,𝑒,,𝑟)   𝐴(𝑣,𝑚,𝑟)   𝐵(𝑤,𝑣,𝑡,𝑒,,𝑖,𝑚,𝑟)   𝐷(𝑥,𝑤,𝑣,𝑡,𝑒,,𝑖,𝑚,𝑟)   𝑇(𝑣,𝑡,𝑚,𝑟)   𝑈(𝑣,𝑡,𝑚,𝑟)   𝐸(𝑣,𝑚,𝑟)   𝐽(𝑥,𝑤,𝑣,𝑡,𝑒,,𝑖,𝑚,𝑟)   𝑊(𝑥,𝑤,𝑣,𝑡,𝑒,,𝑖,𝑚,𝑟)   𝑌(𝑣,𝑡,𝑒,,𝑖,𝑚,𝑟)

Proof of Theorem stoweidlem39
Dummy variable 𝑏 is distinct from all other variables.
StepHypRef Expression
1 stoweidlem39.8 . . . . . . 7 (𝜑𝐷 𝑟)
2 stoweidlem39.9 . . . . . . 7 (𝜑𝐷 ≠ ∅)
31, 2jca 512 . . . . . 6 (𝜑 → (𝐷 𝑟𝐷 ≠ ∅))
4 ssn0 4334 . . . . . 6 ((𝐷 𝑟𝐷 ≠ ∅) → 𝑟 ≠ ∅)
5 unieq 4850 . . . . . . . 8 (𝑟 = ∅ → 𝑟 = ∅)
6 uni0 4869 . . . . . . . 8 ∅ = ∅
75, 6eqtrdi 2794 . . . . . . 7 (𝑟 = ∅ → 𝑟 = ∅)
87necon3i 2976 . . . . . 6 ( 𝑟 ≠ ∅ → 𝑟 ≠ ∅)
93, 4, 83syl 18 . . . . 5 (𝜑𝑟 ≠ ∅)
109neneqd 2948 . . . 4 (𝜑 → ¬ 𝑟 = ∅)
11 stoweidlem39.7 . . . . . 6 (𝜑𝑟 ∈ (𝒫 𝑊 ∩ Fin))
12 elinel2 4130 . . . . . 6 (𝑟 ∈ (𝒫 𝑊 ∩ Fin) → 𝑟 ∈ Fin)
1311, 12syl 17 . . . . 5 (𝜑𝑟 ∈ Fin)
14 fz1f1o 15422 . . . . 5 (𝑟 ∈ Fin → (𝑟 = ∅ ∨ ((♯‘𝑟) ∈ ℕ ∧ ∃𝑣 𝑣:(1...(♯‘𝑟))–1-1-onto𝑟)))
15 pm2.53 848 . . . . 5 ((𝑟 = ∅ ∨ ((♯‘𝑟) ∈ ℕ ∧ ∃𝑣 𝑣:(1...(♯‘𝑟))–1-1-onto𝑟)) → (¬ 𝑟 = ∅ → ((♯‘𝑟) ∈ ℕ ∧ ∃𝑣 𝑣:(1...(♯‘𝑟))–1-1-onto𝑟)))
1613, 14, 153syl 18 . . . 4 (𝜑 → (¬ 𝑟 = ∅ → ((♯‘𝑟) ∈ ℕ ∧ ∃𝑣 𝑣:(1...(♯‘𝑟))–1-1-onto𝑟)))
1710, 16mpd 15 . . 3 (𝜑 → ((♯‘𝑟) ∈ ℕ ∧ ∃𝑣 𝑣:(1...(♯‘𝑟))–1-1-onto𝑟))
18 oveq2 7283 . . . . . 6 (𝑚 = (♯‘𝑟) → (1...𝑚) = (1...(♯‘𝑟)))
1918f1oeq2d 6712 . . . . 5 (𝑚 = (♯‘𝑟) → (𝑣:(1...𝑚)–1-1-onto𝑟𝑣:(1...(♯‘𝑟))–1-1-onto𝑟))
2019exbidv 1924 . . . 4 (𝑚 = (♯‘𝑟) → (∃𝑣 𝑣:(1...𝑚)–1-1-onto𝑟 ↔ ∃𝑣 𝑣:(1...(♯‘𝑟))–1-1-onto𝑟))
2120rspcev 3561 . . 3 (((♯‘𝑟) ∈ ℕ ∧ ∃𝑣 𝑣:(1...(♯‘𝑟))–1-1-onto𝑟) → ∃𝑚 ∈ ℕ ∃𝑣 𝑣:(1...𝑚)–1-1-onto𝑟)
2217, 21syl 17 . 2 (𝜑 → ∃𝑚 ∈ ℕ ∃𝑣 𝑣:(1...𝑚)–1-1-onto𝑟)
23 f1of 6716 . . . . . . . 8 (𝑣:(1...𝑚)–1-1-onto𝑟𝑣:(1...𝑚)⟶𝑟)
2423adantl 482 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ 𝑣:(1...𝑚)–1-1-onto𝑟) → 𝑣:(1...𝑚)⟶𝑟)
25 simpll 764 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ) ∧ 𝑣:(1...𝑚)–1-1-onto𝑟) → 𝜑)
26 elinel1 4129 . . . . . . . . 9 (𝑟 ∈ (𝒫 𝑊 ∩ Fin) → 𝑟 ∈ 𝒫 𝑊)
2726elpwid 4544 . . . . . . . 8 (𝑟 ∈ (𝒫 𝑊 ∩ Fin) → 𝑟𝑊)
2825, 11, 273syl 18 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ 𝑣:(1...𝑚)–1-1-onto𝑟) → 𝑟𝑊)
2924, 28fssd 6618 . . . . . 6 (((𝜑𝑚 ∈ ℕ) ∧ 𝑣:(1...𝑚)–1-1-onto𝑟) → 𝑣:(1...𝑚)⟶𝑊)
301ad2antrr 723 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ 𝑣:(1...𝑚)–1-1-onto𝑟) → 𝐷 𝑟)
31 dff1o2 6721 . . . . . . . . . 10 (𝑣:(1...𝑚)–1-1-onto𝑟 ↔ (𝑣 Fn (1...𝑚) ∧ Fun 𝑣 ∧ ran 𝑣 = 𝑟))
3231simp3bi 1146 . . . . . . . . 9 (𝑣:(1...𝑚)–1-1-onto𝑟 → ran 𝑣 = 𝑟)
3332unieqd 4853 . . . . . . . 8 (𝑣:(1...𝑚)–1-1-onto𝑟 ran 𝑣 = 𝑟)
3433adantl 482 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ 𝑣:(1...𝑚)–1-1-onto𝑟) → ran 𝑣 = 𝑟)
3530, 34sseqtrrd 3962 . . . . . 6 (((𝜑𝑚 ∈ ℕ) ∧ 𝑣:(1...𝑚)–1-1-onto𝑟) → 𝐷 ran 𝑣)
36 stoweidlem39.1 . . . . . . . . 9 𝜑
37 nfv 1917 . . . . . . . . 9 𝑚 ∈ ℕ
3836, 37nfan 1902 . . . . . . . 8 (𝜑𝑚 ∈ ℕ)
39 nfv 1917 . . . . . . . 8 𝑣:(1...𝑚)–1-1-onto𝑟
4038, 39nfan 1902 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) ∧ 𝑣:(1...𝑚)–1-1-onto𝑟)
41 stoweidlem39.2 . . . . . . . . 9 𝑡𝜑
42 nfv 1917 . . . . . . . . 9 𝑡 𝑚 ∈ ℕ
4341, 42nfan 1902 . . . . . . . 8 𝑡(𝜑𝑚 ∈ ℕ)
44 nfv 1917 . . . . . . . 8 𝑡 𝑣:(1...𝑚)–1-1-onto𝑟
4543, 44nfan 1902 . . . . . . 7 𝑡((𝜑𝑚 ∈ ℕ) ∧ 𝑣:(1...𝑚)–1-1-onto𝑟)
46 stoweidlem39.3 . . . . . . . . 9 𝑤𝜑
47 nfv 1917 . . . . . . . . 9 𝑤 𝑚 ∈ ℕ
4846, 47nfan 1902 . . . . . . . 8 𝑤(𝜑𝑚 ∈ ℕ)
49 nfv 1917 . . . . . . . 8 𝑤 𝑣:(1...𝑚)–1-1-onto𝑟
5048, 49nfan 1902 . . . . . . 7 𝑤((𝜑𝑚 ∈ ℕ) ∧ 𝑣:(1...𝑚)–1-1-onto𝑟)
51 stoweidlem39.5 . . . . . . 7 𝑌 = {𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)}
52 stoweidlem39.6 . . . . . . 7 𝑊 = {𝑤𝐽 ∣ ∀𝑒 ∈ ℝ+𝐴 (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ∧ ∀𝑡𝑤 (𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑡))}
53 eqid 2738 . . . . . . 7 (𝑤𝑟 ↦ {𝐴 ∣ (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ∧ ∀𝑡𝑤 (𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − (𝐸 / 𝑚)) < (𝑡))}) = (𝑤𝑟 ↦ {𝐴 ∣ (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ∧ ∀𝑡𝑤 (𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − (𝐸 / 𝑚)) < (𝑡))})
54 simplr 766 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ 𝑣:(1...𝑚)–1-1-onto𝑟) → 𝑚 ∈ ℕ)
55 simpr 485 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ 𝑣:(1...𝑚)–1-1-onto𝑟) → 𝑣:(1...𝑚)–1-1-onto𝑟)
56 stoweidlem39.10 . . . . . . . 8 (𝜑𝐸 ∈ ℝ+)
5756ad2antrr 723 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ 𝑣:(1...𝑚)–1-1-onto𝑟) → 𝐸 ∈ ℝ+)
58 stoweidlem39.11 . . . . . . . . . . . 12 (𝜑𝐵𝑇)
5958sselda 3921 . . . . . . . . . . 11 ((𝜑𝑏𝐵) → 𝑏𝑇)
60 notnot 142 . . . . . . . . . . . . . . 15 (𝑏𝐵 → ¬ ¬ 𝑏𝐵)
6160intnand 489 . . . . . . . . . . . . . 14 (𝑏𝐵 → ¬ (𝑏𝑇 ∧ ¬ 𝑏𝐵))
6261adantl 482 . . . . . . . . . . . . 13 ((𝜑𝑏𝐵) → ¬ (𝑏𝑇 ∧ ¬ 𝑏𝐵))
63 eldif 3897 . . . . . . . . . . . . 13 (𝑏 ∈ (𝑇𝐵) ↔ (𝑏𝑇 ∧ ¬ 𝑏𝐵))
6462, 63sylnibr 329 . . . . . . . . . . . 12 ((𝜑𝑏𝐵) → ¬ 𝑏 ∈ (𝑇𝐵))
65 stoweidlem39.4 . . . . . . . . . . . . 13 𝑈 = (𝑇𝐵)
6665eleq2i 2830 . . . . . . . . . . . 12 (𝑏𝑈𝑏 ∈ (𝑇𝐵))
6764, 66sylnibr 329 . . . . . . . . . . 11 ((𝜑𝑏𝐵) → ¬ 𝑏𝑈)
6859, 67eldifd 3898 . . . . . . . . . 10 ((𝜑𝑏𝐵) → 𝑏 ∈ (𝑇𝑈))
6968ralrimiva 3103 . . . . . . . . 9 (𝜑 → ∀𝑏𝐵 𝑏 ∈ (𝑇𝑈))
70 dfss3 3909 . . . . . . . . 9 (𝐵 ⊆ (𝑇𝑈) ↔ ∀𝑏𝐵 𝑏 ∈ (𝑇𝑈))
7169, 70sylibr 233 . . . . . . . 8 (𝜑𝐵 ⊆ (𝑇𝑈))
7271ad2antrr 723 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ 𝑣:(1...𝑚)–1-1-onto𝑟) → 𝐵 ⊆ (𝑇𝑈))
73 stoweidlem39.12 . . . . . . . 8 (𝜑𝑊 ∈ V)
7473ad2antrr 723 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ 𝑣:(1...𝑚)–1-1-onto𝑟) → 𝑊 ∈ V)
75 stoweidlem39.13 . . . . . . . 8 (𝜑𝐴 ∈ V)
7675ad2antrr 723 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ 𝑣:(1...𝑚)–1-1-onto𝑟) → 𝐴 ∈ V)
7713ad2antrr 723 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ) ∧ 𝑣:(1...𝑚)–1-1-onto𝑟) → 𝑟 ∈ Fin)
78 mptfi 9118 . . . . . . . 8 (𝑟 ∈ Fin → (𝑤𝑟 ↦ {𝐴 ∣ (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ∧ ∀𝑡𝑤 (𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − (𝐸 / 𝑚)) < (𝑡))}) ∈ Fin)
79 rnfi 9102 . . . . . . . 8 ((𝑤𝑟 ↦ {𝐴 ∣ (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ∧ ∀𝑡𝑤 (𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − (𝐸 / 𝑚)) < (𝑡))}) ∈ Fin → ran (𝑤𝑟 ↦ {𝐴 ∣ (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ∧ ∀𝑡𝑤 (𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − (𝐸 / 𝑚)) < (𝑡))}) ∈ Fin)
8077, 78, 793syl 18 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ 𝑣:(1...𝑚)–1-1-onto𝑟) → ran (𝑤𝑟 ↦ {𝐴 ∣ (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ∧ ∀𝑡𝑤 (𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − (𝐸 / 𝑚)) < (𝑡))}) ∈ Fin)
8140, 45, 50, 51, 52, 53, 28, 54, 55, 57, 72, 74, 76, 80stoweidlem31 43572 . . . . . 6 (((𝜑𝑚 ∈ ℕ) ∧ 𝑣:(1...𝑚)–1-1-onto𝑟) → ∃𝑥(𝑥:(1...𝑚)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑥𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑥𝑖)‘𝑡))))
8229, 35, 813jca 1127 . . . . 5 (((𝜑𝑚 ∈ ℕ) ∧ 𝑣:(1...𝑚)–1-1-onto𝑟) → (𝑣:(1...𝑚)⟶𝑊𝐷 ran 𝑣 ∧ ∃𝑥(𝑥:(1...𝑚)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑥𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑥𝑖)‘𝑡)))))
8382ex 413 . . . 4 ((𝜑𝑚 ∈ ℕ) → (𝑣:(1...𝑚)–1-1-onto𝑟 → (𝑣:(1...𝑚)⟶𝑊𝐷 ran 𝑣 ∧ ∃𝑥(𝑥:(1...𝑚)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑥𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑥𝑖)‘𝑡))))))
8483eximdv 1920 . . 3 ((𝜑𝑚 ∈ ℕ) → (∃𝑣 𝑣:(1...𝑚)–1-1-onto𝑟 → ∃𝑣(𝑣:(1...𝑚)⟶𝑊𝐷 ran 𝑣 ∧ ∃𝑥(𝑥:(1...𝑚)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑥𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑥𝑖)‘𝑡))))))
8584reximdva 3203 . 2 (𝜑 → (∃𝑚 ∈ ℕ ∃𝑣 𝑣:(1...𝑚)–1-1-onto𝑟 → ∃𝑚 ∈ ℕ ∃𝑣(𝑣:(1...𝑚)⟶𝑊𝐷 ran 𝑣 ∧ ∃𝑥(𝑥:(1...𝑚)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑥𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑥𝑖)‘𝑡))))))
8622, 85mpd 15 1 (𝜑 → ∃𝑚 ∈ ℕ ∃𝑣(𝑣:(1...𝑚)⟶𝑊𝐷 ran 𝑣 ∧ ∃𝑥(𝑥:(1...𝑚)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑥𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑥𝑖)‘𝑡)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wo 844  w3a 1086   = wceq 1539  wex 1782  wnf 1786  wcel 2106  wne 2943  wral 3064  wrex 3065  {crab 3068  Vcvv 3432  cdif 3884  cin 3886  wss 3887  c0 4256  𝒫 cpw 4533   cuni 4839   class class class wbr 5074  cmpt 5157  ccnv 5588  ran crn 5590  Fun wfun 6427   Fn wfn 6428  wf 6429  1-1-ontowf1o 6432  cfv 6433  (class class class)co 7275  Fincfn 8733  0cc0 10871  1c1 10872   < clt 11009  cle 11010  cmin 11205   / cdiv 11632  cn 11973  +crp 12730  ...cfz 13239  chash 14044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-fz 13240  df-hash 14045
This theorem is referenced by:  stoweidlem57  43598
  Copyright terms: Public domain W3C validator