Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem39 Structured version   Visualization version   GIF version

Theorem stoweidlem39 42849
 Description: This lemma is used to prove that there exists a function x as in the proof of Lemma 2 in [BrosowskiDeutsh] p. 91: assuming that 𝑟 is a finite subset of 𝑊, 𝑥 indexes a finite set of functions in the subalgebra (of the Stone Weierstrass theorem), such that for all i ranging in the finite indexing set, 0 ≤ xi ≤ 1, xi < ε / m on V(ti), and xi > 1 - ε / m on 𝐵. Here 𝐷 is used to represent A in the paper's Lemma 2 (because 𝐴 is used for the subalgebra), 𝑀 is used to represent m in the paper, 𝐸 is used to represent ε, and vi is used to represent V(ti). 𝑊 is just a local definition, used to shorten statements. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem39.1 𝜑
stoweidlem39.2 𝑡𝜑
stoweidlem39.3 𝑤𝜑
stoweidlem39.4 𝑈 = (𝑇𝐵)
stoweidlem39.5 𝑌 = {𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)}
stoweidlem39.6 𝑊 = {𝑤𝐽 ∣ ∀𝑒 ∈ ℝ+𝐴 (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ∧ ∀𝑡𝑤 (𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑡))}
stoweidlem39.7 (𝜑𝑟 ∈ (𝒫 𝑊 ∩ Fin))
stoweidlem39.8 (𝜑𝐷 𝑟)
stoweidlem39.9 (𝜑𝐷 ≠ ∅)
stoweidlem39.10 (𝜑𝐸 ∈ ℝ+)
stoweidlem39.11 (𝜑𝐵𝑇)
stoweidlem39.12 (𝜑𝑊 ∈ V)
stoweidlem39.13 (𝜑𝐴 ∈ V)
Assertion
Ref Expression
stoweidlem39 (𝜑 → ∃𝑚 ∈ ℕ ∃𝑣(𝑣:(1...𝑚)⟶𝑊𝐷 ran 𝑣 ∧ ∃𝑥(𝑥:(1...𝑚)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑥𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑥𝑖)‘𝑡)))))
Distinct variable groups:   𝑒,,𝑚,𝑡,𝑤   𝐴,𝑒,,𝑡,𝑤   𝑒,𝐸,,𝑡,𝑤   𝑇,𝑒,,𝑤   𝑈,𝑒,,𝑤   ,𝑖,𝑟,𝑣,𝑥,𝑚,𝑡,𝑤   𝐴,𝑖,𝑥   𝑖,𝐸,𝑥   𝑇,𝑖,𝑥   𝑈,𝑖,𝑥   𝜑,𝑖,𝑚,𝑣   𝑤,𝑌,𝑥   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥,𝑤,𝑡,𝑒,,𝑟)   𝐴(𝑣,𝑚,𝑟)   𝐵(𝑤,𝑣,𝑡,𝑒,,𝑖,𝑚,𝑟)   𝐷(𝑥,𝑤,𝑣,𝑡,𝑒,,𝑖,𝑚,𝑟)   𝑇(𝑣,𝑡,𝑚,𝑟)   𝑈(𝑣,𝑡,𝑚,𝑟)   𝐸(𝑣,𝑚,𝑟)   𝐽(𝑥,𝑤,𝑣,𝑡,𝑒,,𝑖,𝑚,𝑟)   𝑊(𝑥,𝑤,𝑣,𝑡,𝑒,,𝑖,𝑚,𝑟)   𝑌(𝑣,𝑡,𝑒,,𝑖,𝑚,𝑟)

Proof of Theorem stoweidlem39
Dummy variable 𝑏 is distinct from all other variables.
StepHypRef Expression
1 stoweidlem39.8 . . . . . . 7 (𝜑𝐷 𝑟)
2 stoweidlem39.9 . . . . . . 7 (𝜑𝐷 ≠ ∅)
31, 2jca 515 . . . . . 6 (𝜑 → (𝐷 𝑟𝐷 ≠ ∅))
4 ssn0 4311 . . . . . 6 ((𝐷 𝑟𝐷 ≠ ∅) → 𝑟 ≠ ∅)
5 unieq 4815 . . . . . . . 8 (𝑟 = ∅ → 𝑟 = ∅)
6 uni0 4832 . . . . . . . 8 ∅ = ∅
75, 6eqtrdi 2849 . . . . . . 7 (𝑟 = ∅ → 𝑟 = ∅)
87necon3i 3019 . . . . . 6 ( 𝑟 ≠ ∅ → 𝑟 ≠ ∅)
93, 4, 83syl 18 . . . . 5 (𝜑𝑟 ≠ ∅)
109neneqd 2992 . . . 4 (𝜑 → ¬ 𝑟 = ∅)
11 stoweidlem39.7 . . . . . 6 (𝜑𝑟 ∈ (𝒫 𝑊 ∩ Fin))
12 elinel2 4126 . . . . . 6 (𝑟 ∈ (𝒫 𝑊 ∩ Fin) → 𝑟 ∈ Fin)
1311, 12syl 17 . . . . 5 (𝜑𝑟 ∈ Fin)
14 fz1f1o 15079 . . . . 5 (𝑟 ∈ Fin → (𝑟 = ∅ ∨ ((♯‘𝑟) ∈ ℕ ∧ ∃𝑣 𝑣:(1...(♯‘𝑟))–1-1-onto𝑟)))
15 pm2.53 848 . . . . 5 ((𝑟 = ∅ ∨ ((♯‘𝑟) ∈ ℕ ∧ ∃𝑣 𝑣:(1...(♯‘𝑟))–1-1-onto𝑟)) → (¬ 𝑟 = ∅ → ((♯‘𝑟) ∈ ℕ ∧ ∃𝑣 𝑣:(1...(♯‘𝑟))–1-1-onto𝑟)))
1613, 14, 153syl 18 . . . 4 (𝜑 → (¬ 𝑟 = ∅ → ((♯‘𝑟) ∈ ℕ ∧ ∃𝑣 𝑣:(1...(♯‘𝑟))–1-1-onto𝑟)))
1710, 16mpd 15 . . 3 (𝜑 → ((♯‘𝑟) ∈ ℕ ∧ ∃𝑣 𝑣:(1...(♯‘𝑟))–1-1-onto𝑟))
18 oveq2 7153 . . . . . 6 (𝑚 = (♯‘𝑟) → (1...𝑚) = (1...(♯‘𝑟)))
1918f1oeq2d 6595 . . . . 5 (𝑚 = (♯‘𝑟) → (𝑣:(1...𝑚)–1-1-onto𝑟𝑣:(1...(♯‘𝑟))–1-1-onto𝑟))
2019exbidv 1922 . . . 4 (𝑚 = (♯‘𝑟) → (∃𝑣 𝑣:(1...𝑚)–1-1-onto𝑟 ↔ ∃𝑣 𝑣:(1...(♯‘𝑟))–1-1-onto𝑟))
2120rspcev 3572 . . 3 (((♯‘𝑟) ∈ ℕ ∧ ∃𝑣 𝑣:(1...(♯‘𝑟))–1-1-onto𝑟) → ∃𝑚 ∈ ℕ ∃𝑣 𝑣:(1...𝑚)–1-1-onto𝑟)
2217, 21syl 17 . 2 (𝜑 → ∃𝑚 ∈ ℕ ∃𝑣 𝑣:(1...𝑚)–1-1-onto𝑟)
23 f1of 6599 . . . . . . . 8 (𝑣:(1...𝑚)–1-1-onto𝑟𝑣:(1...𝑚)⟶𝑟)
2423adantl 485 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ 𝑣:(1...𝑚)–1-1-onto𝑟) → 𝑣:(1...𝑚)⟶𝑟)
25 simpll 766 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ) ∧ 𝑣:(1...𝑚)–1-1-onto𝑟) → 𝜑)
26 elinel1 4125 . . . . . . . . 9 (𝑟 ∈ (𝒫 𝑊 ∩ Fin) → 𝑟 ∈ 𝒫 𝑊)
2726elpwid 4511 . . . . . . . 8 (𝑟 ∈ (𝒫 𝑊 ∩ Fin) → 𝑟𝑊)
2825, 11, 273syl 18 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ 𝑣:(1...𝑚)–1-1-onto𝑟) → 𝑟𝑊)
2924, 28fssd 6510 . . . . . 6 (((𝜑𝑚 ∈ ℕ) ∧ 𝑣:(1...𝑚)–1-1-onto𝑟) → 𝑣:(1...𝑚)⟶𝑊)
301ad2antrr 725 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ 𝑣:(1...𝑚)–1-1-onto𝑟) → 𝐷 𝑟)
31 dff1o2 6604 . . . . . . . . . 10 (𝑣:(1...𝑚)–1-1-onto𝑟 ↔ (𝑣 Fn (1...𝑚) ∧ Fun 𝑣 ∧ ran 𝑣 = 𝑟))
3231simp3bi 1144 . . . . . . . . 9 (𝑣:(1...𝑚)–1-1-onto𝑟 → ran 𝑣 = 𝑟)
3332unieqd 4818 . . . . . . . 8 (𝑣:(1...𝑚)–1-1-onto𝑟 ran 𝑣 = 𝑟)
3433adantl 485 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ 𝑣:(1...𝑚)–1-1-onto𝑟) → ran 𝑣 = 𝑟)
3530, 34sseqtrrd 3958 . . . . . 6 (((𝜑𝑚 ∈ ℕ) ∧ 𝑣:(1...𝑚)–1-1-onto𝑟) → 𝐷 ran 𝑣)
36 stoweidlem39.1 . . . . . . . . 9 𝜑
37 nfv 1915 . . . . . . . . 9 𝑚 ∈ ℕ
3836, 37nfan 1900 . . . . . . . 8 (𝜑𝑚 ∈ ℕ)
39 nfv 1915 . . . . . . . 8 𝑣:(1...𝑚)–1-1-onto𝑟
4038, 39nfan 1900 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) ∧ 𝑣:(1...𝑚)–1-1-onto𝑟)
41 stoweidlem39.2 . . . . . . . . 9 𝑡𝜑
42 nfv 1915 . . . . . . . . 9 𝑡 𝑚 ∈ ℕ
4341, 42nfan 1900 . . . . . . . 8 𝑡(𝜑𝑚 ∈ ℕ)
44 nfv 1915 . . . . . . . 8 𝑡 𝑣:(1...𝑚)–1-1-onto𝑟
4543, 44nfan 1900 . . . . . . 7 𝑡((𝜑𝑚 ∈ ℕ) ∧ 𝑣:(1...𝑚)–1-1-onto𝑟)
46 stoweidlem39.3 . . . . . . . . 9 𝑤𝜑
47 nfv 1915 . . . . . . . . 9 𝑤 𝑚 ∈ ℕ
4846, 47nfan 1900 . . . . . . . 8 𝑤(𝜑𝑚 ∈ ℕ)
49 nfv 1915 . . . . . . . 8 𝑤 𝑣:(1...𝑚)–1-1-onto𝑟
5048, 49nfan 1900 . . . . . . 7 𝑤((𝜑𝑚 ∈ ℕ) ∧ 𝑣:(1...𝑚)–1-1-onto𝑟)
51 stoweidlem39.5 . . . . . . 7 𝑌 = {𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)}
52 stoweidlem39.6 . . . . . . 7 𝑊 = {𝑤𝐽 ∣ ∀𝑒 ∈ ℝ+𝐴 (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ∧ ∀𝑡𝑤 (𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑡))}
53 eqid 2798 . . . . . . 7 (𝑤𝑟 ↦ {𝐴 ∣ (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ∧ ∀𝑡𝑤 (𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − (𝐸 / 𝑚)) < (𝑡))}) = (𝑤𝑟 ↦ {𝐴 ∣ (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ∧ ∀𝑡𝑤 (𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − (𝐸 / 𝑚)) < (𝑡))})
54 simplr 768 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ 𝑣:(1...𝑚)–1-1-onto𝑟) → 𝑚 ∈ ℕ)
55 simpr 488 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ 𝑣:(1...𝑚)–1-1-onto𝑟) → 𝑣:(1...𝑚)–1-1-onto𝑟)
56 stoweidlem39.10 . . . . . . . 8 (𝜑𝐸 ∈ ℝ+)
5756ad2antrr 725 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ 𝑣:(1...𝑚)–1-1-onto𝑟) → 𝐸 ∈ ℝ+)
58 stoweidlem39.11 . . . . . . . . . . . 12 (𝜑𝐵𝑇)
5958sselda 3917 . . . . . . . . . . 11 ((𝜑𝑏𝐵) → 𝑏𝑇)
60 notnot 144 . . . . . . . . . . . . . . 15 (𝑏𝐵 → ¬ ¬ 𝑏𝐵)
6160intnand 492 . . . . . . . . . . . . . 14 (𝑏𝐵 → ¬ (𝑏𝑇 ∧ ¬ 𝑏𝐵))
6261adantl 485 . . . . . . . . . . . . 13 ((𝜑𝑏𝐵) → ¬ (𝑏𝑇 ∧ ¬ 𝑏𝐵))
63 eldif 3893 . . . . . . . . . . . . 13 (𝑏 ∈ (𝑇𝐵) ↔ (𝑏𝑇 ∧ ¬ 𝑏𝐵))
6462, 63sylnibr 332 . . . . . . . . . . . 12 ((𝜑𝑏𝐵) → ¬ 𝑏 ∈ (𝑇𝐵))
65 stoweidlem39.4 . . . . . . . . . . . . 13 𝑈 = (𝑇𝐵)
6665eleq2i 2881 . . . . . . . . . . . 12 (𝑏𝑈𝑏 ∈ (𝑇𝐵))
6764, 66sylnibr 332 . . . . . . . . . . 11 ((𝜑𝑏𝐵) → ¬ 𝑏𝑈)
6859, 67eldifd 3894 . . . . . . . . . 10 ((𝜑𝑏𝐵) → 𝑏 ∈ (𝑇𝑈))
6968ralrimiva 3149 . . . . . . . . 9 (𝜑 → ∀𝑏𝐵 𝑏 ∈ (𝑇𝑈))
70 dfss3 3905 . . . . . . . . 9 (𝐵 ⊆ (𝑇𝑈) ↔ ∀𝑏𝐵 𝑏 ∈ (𝑇𝑈))
7169, 70sylibr 237 . . . . . . . 8 (𝜑𝐵 ⊆ (𝑇𝑈))
7271ad2antrr 725 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ 𝑣:(1...𝑚)–1-1-onto𝑟) → 𝐵 ⊆ (𝑇𝑈))
73 stoweidlem39.12 . . . . . . . 8 (𝜑𝑊 ∈ V)
7473ad2antrr 725 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ 𝑣:(1...𝑚)–1-1-onto𝑟) → 𝑊 ∈ V)
75 stoweidlem39.13 . . . . . . . 8 (𝜑𝐴 ∈ V)
7675ad2antrr 725 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ 𝑣:(1...𝑚)–1-1-onto𝑟) → 𝐴 ∈ V)
7713ad2antrr 725 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ) ∧ 𝑣:(1...𝑚)–1-1-onto𝑟) → 𝑟 ∈ Fin)
78 mptfi 8825 . . . . . . . 8 (𝑟 ∈ Fin → (𝑤𝑟 ↦ {𝐴 ∣ (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ∧ ∀𝑡𝑤 (𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − (𝐸 / 𝑚)) < (𝑡))}) ∈ Fin)
79 rnfi 8809 . . . . . . . 8 ((𝑤𝑟 ↦ {𝐴 ∣ (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ∧ ∀𝑡𝑤 (𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − (𝐸 / 𝑚)) < (𝑡))}) ∈ Fin → ran (𝑤𝑟 ↦ {𝐴 ∣ (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ∧ ∀𝑡𝑤 (𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − (𝐸 / 𝑚)) < (𝑡))}) ∈ Fin)
8077, 78, 793syl 18 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ 𝑣:(1...𝑚)–1-1-onto𝑟) → ran (𝑤𝑟 ↦ {𝐴 ∣ (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ∧ ∀𝑡𝑤 (𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − (𝐸 / 𝑚)) < (𝑡))}) ∈ Fin)
8140, 45, 50, 51, 52, 53, 28, 54, 55, 57, 72, 74, 76, 80stoweidlem31 42841 . . . . . 6 (((𝜑𝑚 ∈ ℕ) ∧ 𝑣:(1...𝑚)–1-1-onto𝑟) → ∃𝑥(𝑥:(1...𝑚)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑥𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑥𝑖)‘𝑡))))
8229, 35, 813jca 1125 . . . . 5 (((𝜑𝑚 ∈ ℕ) ∧ 𝑣:(1...𝑚)–1-1-onto𝑟) → (𝑣:(1...𝑚)⟶𝑊𝐷 ran 𝑣 ∧ ∃𝑥(𝑥:(1...𝑚)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑥𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑥𝑖)‘𝑡)))))
8382ex 416 . . . 4 ((𝜑𝑚 ∈ ℕ) → (𝑣:(1...𝑚)–1-1-onto𝑟 → (𝑣:(1...𝑚)⟶𝑊𝐷 ran 𝑣 ∧ ∃𝑥(𝑥:(1...𝑚)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑥𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑥𝑖)‘𝑡))))))
8483eximdv 1918 . . 3 ((𝜑𝑚 ∈ ℕ) → (∃𝑣 𝑣:(1...𝑚)–1-1-onto𝑟 → ∃𝑣(𝑣:(1...𝑚)⟶𝑊𝐷 ran 𝑣 ∧ ∃𝑥(𝑥:(1...𝑚)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑥𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑥𝑖)‘𝑡))))))
8584reximdva 3234 . 2 (𝜑 → (∃𝑚 ∈ ℕ ∃𝑣 𝑣:(1...𝑚)–1-1-onto𝑟 → ∃𝑚 ∈ ℕ ∃𝑣(𝑣:(1...𝑚)⟶𝑊𝐷 ran 𝑣 ∧ ∃𝑥(𝑥:(1...𝑚)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑥𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑥𝑖)‘𝑡))))))
8622, 85mpd 15 1 (𝜑 → ∃𝑚 ∈ ℕ ∃𝑣(𝑣:(1...𝑚)⟶𝑊𝐷 ran 𝑣 ∧ ∃𝑥(𝑥:(1...𝑚)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑥𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑥𝑖)‘𝑡)))))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 399   ∨ wo 844   ∧ w3a 1084   = wceq 1538  ∃wex 1781  Ⅎwnf 1785   ∈ wcel 2111   ≠ wne 2987  ∀wral 3106  ∃wrex 3107  {crab 3110  Vcvv 3442   ∖ cdif 3880   ∩ cin 3882   ⊆ wss 3883  ∅c0 4246  𝒫 cpw 4500  ∪ cuni 4804   class class class wbr 5034   ↦ cmpt 5114  ◡ccnv 5522  ran crn 5524  Fun wfun 6326   Fn wfn 6327  ⟶wf 6328  –1-1-onto→wf1o 6331  ‘cfv 6332  (class class class)co 7145  Fincfn 8510  0cc0 10544  1c1 10545   < clt 10682   ≤ cle 10683   − cmin 10877   / cdiv 11304  ℕcn 11643  ℝ+crp 12397  ...cfz 12905  ♯chash 13706 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5158  ax-sep 5171  ax-nul 5178  ax-pow 5235  ax-pr 5299  ax-un 7454  ax-cnex 10600  ax-resscn 10601  ax-1cn 10602  ax-icn 10603  ax-addcl 10604  ax-addrcl 10605  ax-mulcl 10606  ax-mulrcl 10607  ax-mulcom 10608  ax-addass 10609  ax-mulass 10610  ax-distr 10611  ax-i2m1 10612  ax-1ne0 10613  ax-1rid 10614  ax-rnegex 10615  ax-rrecex 10616  ax-cnre 10617  ax-pre-lttri 10618  ax-pre-lttrn 10619  ax-pre-ltadd 10620  ax-pre-mulgt0 10621 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3444  df-sbc 3723  df-csb 3831  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4805  df-int 4843  df-iun 4887  df-br 5035  df-opab 5097  df-mpt 5115  df-tr 5141  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6123  df-ord 6169  df-on 6170  df-lim 6171  df-suc 6172  df-iota 6291  df-fun 6334  df-fn 6335  df-f 6336  df-f1 6337  df-fo 6338  df-f1o 6339  df-fv 6340  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7574  df-1st 7684  df-2nd 7685  df-wrecs 7948  df-recs 8009  df-rdg 8047  df-1o 8103  df-oadd 8107  df-er 8290  df-en 8511  df-dom 8512  df-sdom 8513  df-fin 8514  df-card 9370  df-pnf 10684  df-mnf 10685  df-xr 10686  df-ltxr 10687  df-le 10688  df-sub 10879  df-neg 10880  df-div 11305  df-nn 11644  df-n0 11904  df-z 11990  df-uz 12252  df-rp 12398  df-fz 12906  df-hash 13707 This theorem is referenced by:  stoweidlem57  42867
 Copyright terms: Public domain W3C validator