![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nssss | Structured version Visualization version GIF version |
Description: Negation of subclass relationship. Compare nss 4039. (Contributed by NM, 30-Jun-2004.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
Ref | Expression |
---|---|
nssss | ⊢ (¬ 𝐴 ⊆ 𝐵 ↔ ∃𝑥(𝑥 ⊆ 𝐴 ∧ ¬ 𝑥 ⊆ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exanali 1854 | . . 3 ⊢ (∃𝑥(𝑥 ⊆ 𝐴 ∧ ¬ 𝑥 ⊆ 𝐵) ↔ ¬ ∀𝑥(𝑥 ⊆ 𝐴 → 𝑥 ⊆ 𝐵)) | |
2 | ssextss 5444 | . . 3 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ⊆ 𝐴 → 𝑥 ⊆ 𝐵)) | |
3 | 1, 2 | xchbinxr 335 | . 2 ⊢ (∃𝑥(𝑥 ⊆ 𝐴 ∧ ¬ 𝑥 ⊆ 𝐵) ↔ ¬ 𝐴 ⊆ 𝐵) |
4 | 3 | bicomi 223 | 1 ⊢ (¬ 𝐴 ⊆ 𝐵 ↔ ∃𝑥(𝑥 ⊆ 𝐴 ∧ ¬ 𝑥 ⊆ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∀wal 1531 ∃wex 1773 ⊆ wss 3941 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 ax-sep 5290 ax-pr 5418 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-v 3468 df-un 3946 df-in 3948 df-ss 3958 df-pw 4597 df-sn 4622 df-pr 4624 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |