| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nssss | Structured version Visualization version GIF version | ||
| Description: Negation of subclass relationship. Compare nss 3995. (Contributed by NM, 30-Jun-2004.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
| Ref | Expression |
|---|---|
| nssss | ⊢ (¬ 𝐴 ⊆ 𝐵 ↔ ∃𝑥(𝑥 ⊆ 𝐴 ∧ ¬ 𝑥 ⊆ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exanali 1860 | . . 3 ⊢ (∃𝑥(𝑥 ⊆ 𝐴 ∧ ¬ 𝑥 ⊆ 𝐵) ↔ ¬ ∀𝑥(𝑥 ⊆ 𝐴 → 𝑥 ⊆ 𝐵)) | |
| 2 | ssextss 5398 | . . 3 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ⊆ 𝐴 → 𝑥 ⊆ 𝐵)) | |
| 3 | 1, 2 | xchbinxr 335 | . 2 ⊢ (∃𝑥(𝑥 ⊆ 𝐴 ∧ ¬ 𝑥 ⊆ 𝐵) ↔ ¬ 𝐴 ⊆ 𝐵) |
| 4 | 3 | bicomi 224 | 1 ⊢ (¬ 𝐴 ⊆ 𝐵 ↔ ∃𝑥(𝑥 ⊆ 𝐴 ∧ ¬ 𝑥 ⊆ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1539 ∃wex 1780 ⊆ wss 3898 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5238 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-v 3439 df-un 3903 df-ss 3915 df-pw 4553 df-sn 4578 df-pr 4580 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |