MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssextss Structured version   Visualization version   GIF version

Theorem ssextss 5458
Description: An extensionality-like principle defining subclass in terms of subsets. (Contributed by NM, 30-Jun-2004.)
Assertion
Ref Expression
ssextss (𝐴𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem ssextss
StepHypRef Expression
1 sspwb 5454 . 2 (𝐴𝐵 ↔ 𝒫 𝐴 ⊆ 𝒫 𝐵)
2 df-ss 3968 . 2 (𝒫 𝐴 ⊆ 𝒫 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝒫 𝐴𝑥 ∈ 𝒫 𝐵))
3 velpw 4605 . . . 4 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
4 velpw 4605 . . . 4 (𝑥 ∈ 𝒫 𝐵𝑥𝐵)
53, 4imbi12i 350 . . 3 ((𝑥 ∈ 𝒫 𝐴𝑥 ∈ 𝒫 𝐵) ↔ (𝑥𝐴𝑥𝐵))
65albii 1819 . 2 (∀𝑥(𝑥 ∈ 𝒫 𝐴𝑥 ∈ 𝒫 𝐵) ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
71, 2, 63bitri 297 1 (𝐴𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1538  wcel 2108  wss 3951  𝒫 cpw 4600
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708  ax-sep 5296  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-tru 1543  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-v 3482  df-un 3956  df-ss 3968  df-pw 4602  df-sn 4627  df-pr 4629
This theorem is referenced by:  ssext  5459  nssss  5460
  Copyright terms: Public domain W3C validator