MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pweqb Structured version   Visualization version   GIF version

Theorem pweqb 5317
Description: Classes are equal if and only if their power classes are equal. Exercise 19 of [TakeutiZaring] p. 18. (Contributed by NM, 13-Oct-1996.)
Assertion
Ref Expression
pweqb (𝐴 = 𝐵 ↔ 𝒫 𝐴 = 𝒫 𝐵)

Proof of Theorem pweqb
StepHypRef Expression
1 sspwb 5310 . . 3 (𝐴𝐵 ↔ 𝒫 𝐴 ⊆ 𝒫 𝐵)
2 sspwb 5310 . . 3 (𝐵𝐴 ↔ 𝒫 𝐵 ⊆ 𝒫 𝐴)
31, 2anbi12i 629 . 2 ((𝐴𝐵𝐵𝐴) ↔ (𝒫 𝐴 ⊆ 𝒫 𝐵 ∧ 𝒫 𝐵 ⊆ 𝒫 𝐴))
4 eqss 3933 . 2 (𝐴 = 𝐵 ↔ (𝐴𝐵𝐵𝐴))
5 eqss 3933 . 2 (𝒫 𝐴 = 𝒫 𝐵 ↔ (𝒫 𝐴 ⊆ 𝒫 𝐵 ∧ 𝒫 𝐵 ⊆ 𝒫 𝐴))
63, 4, 53bitr4i 306 1 (𝐴 = 𝐵 ↔ 𝒫 𝐴 = 𝒫 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 209  wa 399   = wceq 1538  wss 3884  𝒫 cpw 4500
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pr 5298
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2780  df-cleq 2794  df-clel 2873  df-v 3446  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4247  df-pw 4502  df-sn 4529  df-pr 4531
This theorem is referenced by:  psspwb  39395
  Copyright terms: Public domain W3C validator