Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mpoeq3dv | Structured version Visualization version GIF version |
Description: An equality deduction for the maps-to notation restricted to the value of the operation. (Contributed by SO, 16-Jul-2018.) |
Ref | Expression |
---|---|
mpoeq3dv.1 | ⊢ (𝜑 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
mpoeq3dv | ⊢ (𝜑 → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpoeq3dv.1 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐷) | |
2 | 1 | 3ad2ant1 1131 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝐶 = 𝐷) |
3 | 2 | mpoeq3dva 7330 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ∈ cmpo 7257 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-oprab 7259 df-mpo 7260 |
This theorem is referenced by: ofeqd 7513 seqomeq12 8255 cantnfval 9356 seqeq2 13653 seqeq3 13654 relexpsucnnr 14664 lsmfval 19158 phssip 20775 mamuval 21445 matsc 21507 marrepval0 21618 marrepval 21619 marepvval0 21623 marepvval 21624 submaval0 21637 mdetr0 21662 mdet0 21663 mdetunilem7 21675 mdetunilem8 21676 madufval 21694 maduval 21695 maducoeval2 21697 madutpos 21699 madugsum 21700 madurid 21701 minmar1val0 21704 minmar1val 21705 pmat0opsc 21755 pmat1opsc 21756 mat2pmatval 21781 cpm2mval 21807 decpmatid 21827 pmatcollpw2lem 21834 pmatcollpw3lem 21840 mply1topmatval 21861 mp2pm2mplem1 21863 mp2pm2mplem4 21866 ttgval 27140 smatfval 31647 ofceq 31965 reprval 32490 finxpeq1 35484 matunitlindflem1 35700 mnringmulrvald 41734 idfusubc 45312 digfval 45831 2arymaptfv 45885 itcoval 45895 |
Copyright terms: Public domain | W3C validator |