| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpoeq3dv | Structured version Visualization version GIF version | ||
| Description: An equality deduction for the maps-to notation restricted to the value of the operation. (Contributed by SO, 16-Jul-2018.) |
| Ref | Expression |
|---|---|
| mpoeq3dv.1 | ⊢ (𝜑 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| mpoeq3dv | ⊢ (𝜑 → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpoeq3dv.1 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐷) | |
| 2 | 1 | 3ad2ant1 1133 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝐶 = 𝐷) |
| 3 | 2 | mpoeq3dva 7446 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∈ cmpo 7371 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-oprab 7373 df-mpo 7374 |
| This theorem is referenced by: ofeqd 7635 seqomeq12 8399 cantnfval 9597 seqeq2 13946 seqeq3 13947 relexpsucnnr 14967 idfusubc 17842 lsmfval 19552 phssip 21600 mamuval 22313 matsc 22370 marrepval0 22481 marrepval 22482 marepvval0 22486 marepvval 22487 submaval0 22500 mdetr0 22525 mdet0 22526 mdetunilem7 22538 mdetunilem8 22539 madufval 22557 maduval 22558 maducoeval2 22560 madutpos 22562 madugsum 22563 madurid 22564 minmar1val0 22567 minmar1val 22568 pmat0opsc 22618 pmat1opsc 22619 mat2pmatval 22644 cpm2mval 22670 decpmatid 22690 pmatcollpw2lem 22697 pmatcollpw3lem 22703 mply1topmatval 22724 mp2pm2mplem1 22726 mp2pm2mplem4 22729 seqseq123d 28220 ttgval 28855 smatfval 33778 ofceq 34080 reprval 34594 finxpeq1 37367 matunitlindflem1 37603 mnringmulrvald 44209 digfval 48579 2arymaptfv 48633 itcoval 48643 dfswapf2 49243 postcofval 49346 precofval 49349 precofval2 49351 prcofval 49360 |
| Copyright terms: Public domain | W3C validator |