Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mpoeq3dv | Structured version Visualization version GIF version |
Description: An equality deduction for the maps-to notation restricted to the value of the operation. (Contributed by SO, 16-Jul-2018.) |
Ref | Expression |
---|---|
mpoeq3dv.1 | ⊢ (𝜑 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
mpoeq3dv | ⊢ (𝜑 → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpoeq3dv.1 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐷) | |
2 | 1 | 3ad2ant1 1132 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝐶 = 𝐷) |
3 | 2 | mpoeq3dva 7352 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 ∈ cmpo 7277 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-oprab 7279 df-mpo 7280 |
This theorem is referenced by: ofeqd 7535 seqomeq12 8285 cantnfval 9426 seqeq2 13725 seqeq3 13726 relexpsucnnr 14736 lsmfval 19243 phssip 20863 mamuval 21535 matsc 21599 marrepval0 21710 marrepval 21711 marepvval0 21715 marepvval 21716 submaval0 21729 mdetr0 21754 mdet0 21755 mdetunilem7 21767 mdetunilem8 21768 madufval 21786 maduval 21787 maducoeval2 21789 madutpos 21791 madugsum 21792 madurid 21793 minmar1val0 21796 minmar1val 21797 pmat0opsc 21847 pmat1opsc 21848 mat2pmatval 21873 cpm2mval 21899 decpmatid 21919 pmatcollpw2lem 21926 pmatcollpw3lem 21932 mply1topmatval 21953 mp2pm2mplem1 21955 mp2pm2mplem4 21958 ttgval 27236 ttgvalOLD 27237 smatfval 31745 ofceq 32065 reprval 32590 finxpeq1 35557 matunitlindflem1 35773 mnringmulrvald 41845 idfusubc 45424 digfval 45943 2arymaptfv 45997 itcoval 46007 |
Copyright terms: Public domain | W3C validator |