![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpoeq3dv | Structured version Visualization version GIF version |
Description: An equality deduction for the maps-to notation restricted to the value of the operation. (Contributed by SO, 16-Jul-2018.) |
Ref | Expression |
---|---|
mpoeq3dv.1 | ⊢ (𝜑 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
mpoeq3dv | ⊢ (𝜑 → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpoeq3dv.1 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐷) | |
2 | 1 | 3ad2ant1 1133 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝐶 = 𝐷) |
3 | 2 | mpoeq3dva 7488 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 ∈ cmpo 7413 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1089 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-oprab 7415 df-mpo 7416 |
This theorem is referenced by: ofeqd 7674 seqomeq12 8456 cantnfval 9665 seqeq2 13972 seqeq3 13973 relexpsucnnr 14974 lsmfval 19508 phssip 21217 mamuval 21895 matsc 21959 marrepval0 22070 marrepval 22071 marepvval0 22075 marepvval 22076 submaval0 22089 mdetr0 22114 mdet0 22115 mdetunilem7 22127 mdetunilem8 22128 madufval 22146 maduval 22147 maducoeval2 22149 madutpos 22151 madugsum 22152 madurid 22153 minmar1val0 22156 minmar1val 22157 pmat0opsc 22207 pmat1opsc 22208 mat2pmatval 22233 cpm2mval 22259 decpmatid 22279 pmatcollpw2lem 22286 pmatcollpw3lem 22292 mply1topmatval 22313 mp2pm2mplem1 22315 mp2pm2mplem4 22318 ttgval 28164 ttgvalOLD 28165 smatfval 32844 ofceq 33164 reprval 33691 finxpeq1 36353 matunitlindflem1 36570 mnringmulrvald 43068 idfusubc 46719 digfval 47361 2arymaptfv 47415 itcoval 47425 |
Copyright terms: Public domain | W3C validator |