| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpoeq3dv | Structured version Visualization version GIF version | ||
| Description: An equality deduction for the maps-to notation restricted to the value of the operation. (Contributed by SO, 16-Jul-2018.) |
| Ref | Expression |
|---|---|
| mpoeq3dv.1 | ⊢ (𝜑 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| mpoeq3dv | ⊢ (𝜑 → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpoeq3dv.1 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐷) | |
| 2 | 1 | 3ad2ant1 1133 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝐶 = 𝐷) |
| 3 | 2 | mpoeq3dva 7423 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ∈ cmpo 7348 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-oprab 7350 df-mpo 7351 |
| This theorem is referenced by: ofeqd 7612 seqomeq12 8373 cantnfval 9558 seqeq2 13912 seqeq3 13913 relexpsucnnr 14932 idfusubc 17807 lsmfval 19550 phssip 21595 mamuval 22308 matsc 22365 marrepval0 22476 marrepval 22477 marepvval0 22481 marepvval 22482 submaval0 22495 mdetr0 22520 mdet0 22521 mdetunilem7 22533 mdetunilem8 22534 madufval 22552 maduval 22553 maducoeval2 22555 madutpos 22557 madugsum 22558 madurid 22559 minmar1val0 22562 minmar1val 22563 pmat0opsc 22613 pmat1opsc 22614 mat2pmatval 22639 cpm2mval 22665 decpmatid 22685 pmatcollpw2lem 22692 pmatcollpw3lem 22698 mply1topmatval 22719 mp2pm2mplem1 22721 mp2pm2mplem4 22724 seqseq123d 28216 ttgval 28853 smatfval 33808 ofceq 34110 reprval 34623 finxpeq1 37430 matunitlindflem1 37666 mnringmulrvald 44330 digfval 48708 2arymaptfv 48762 itcoval 48772 dfswapf2 49372 postcofval 49475 precofval 49478 precofval2 49480 prcofval 49489 |
| Copyright terms: Public domain | W3C validator |