| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpoeq3dv | Structured version Visualization version GIF version | ||
| Description: An equality deduction for the maps-to notation restricted to the value of the operation. (Contributed by SO, 16-Jul-2018.) |
| Ref | Expression |
|---|---|
| mpoeq3dv.1 | ⊢ (𝜑 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| mpoeq3dv | ⊢ (𝜑 → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpoeq3dv.1 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐷) | |
| 2 | 1 | 3ad2ant1 1133 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝐶 = 𝐷) |
| 3 | 2 | mpoeq3dva 7466 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∈ cmpo 7389 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-oprab 7391 df-mpo 7392 |
| This theorem is referenced by: ofeqd 7655 seqomeq12 8422 cantnfval 9621 seqeq2 13970 seqeq3 13971 relexpsucnnr 14991 idfusubc 17862 lsmfval 19568 phssip 21567 mamuval 22280 matsc 22337 marrepval0 22448 marrepval 22449 marepvval0 22453 marepvval 22454 submaval0 22467 mdetr0 22492 mdet0 22493 mdetunilem7 22505 mdetunilem8 22506 madufval 22524 maduval 22525 maducoeval2 22527 madutpos 22529 madugsum 22530 madurid 22531 minmar1val0 22534 minmar1val 22535 pmat0opsc 22585 pmat1opsc 22586 mat2pmatval 22611 cpm2mval 22637 decpmatid 22657 pmatcollpw2lem 22664 pmatcollpw3lem 22670 mply1topmatval 22691 mp2pm2mplem1 22693 mp2pm2mplem4 22696 seqseq123d 28180 ttgval 28802 smatfval 33785 ofceq 34087 reprval 34601 finxpeq1 37374 matunitlindflem1 37610 mnringmulrvald 44216 digfval 48586 2arymaptfv 48640 itcoval 48650 dfswapf2 49250 postcofval 49353 precofval 49356 precofval2 49358 prcofval 49367 |
| Copyright terms: Public domain | W3C validator |