![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpoeq3dv | Structured version Visualization version GIF version |
Description: An equality deduction for the maps-to notation restricted to the value of the operation. (Contributed by SO, 16-Jul-2018.) |
Ref | Expression |
---|---|
mpoeq3dv.1 | ⊢ (𝜑 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
mpoeq3dv | ⊢ (𝜑 → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpoeq3dv.1 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐷) | |
2 | 1 | 3ad2ant1 1132 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝐶 = 𝐷) |
3 | 2 | mpoeq3dva 7509 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1536 ∈ wcel 2105 ∈ cmpo 7432 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-oprab 7434 df-mpo 7435 |
This theorem is referenced by: ofeqd 7698 seqomeq12 8492 cantnfval 9705 seqeq2 14042 seqeq3 14043 relexpsucnnr 15060 idfusubc 17950 lsmfval 19670 phssip 21693 mamuval 22412 matsc 22471 marrepval0 22582 marrepval 22583 marepvval0 22587 marepvval 22588 submaval0 22601 mdetr0 22626 mdet0 22627 mdetunilem7 22639 mdetunilem8 22640 madufval 22658 maduval 22659 maducoeval2 22661 madutpos 22663 madugsum 22664 madurid 22665 minmar1val0 22668 minmar1val 22669 pmat0opsc 22719 pmat1opsc 22720 mat2pmatval 22745 cpm2mval 22771 decpmatid 22791 pmatcollpw2lem 22798 pmatcollpw3lem 22804 mply1topmatval 22825 mp2pm2mplem1 22827 mp2pm2mplem4 22830 seqseq123d 28306 ttgval 28897 ttgvalOLD 28898 smatfval 33755 ofceq 34077 reprval 34603 finxpeq1 37368 matunitlindflem1 37602 mnringmulrvald 44222 digfval 48446 2arymaptfv 48500 itcoval 48510 |
Copyright terms: Public domain | W3C validator |