![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpoeq3dv | Structured version Visualization version GIF version |
Description: An equality deduction for the maps-to notation restricted to the value of the operation. (Contributed by SO, 16-Jul-2018.) |
Ref | Expression |
---|---|
mpoeq3dv.1 | ⊢ (𝜑 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
mpoeq3dv | ⊢ (𝜑 → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpoeq3dv.1 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐷) | |
2 | 1 | 3ad2ant1 1134 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝐶 = 𝐷) |
3 | 2 | mpoeq3dva 7486 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2107 ∈ cmpo 7411 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-3an 1090 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-oprab 7413 df-mpo 7414 |
This theorem is referenced by: ofeqd 7672 seqomeq12 8454 cantnfval 9663 seqeq2 13970 seqeq3 13971 relexpsucnnr 14972 lsmfval 19506 phssip 21211 mamuval 21888 matsc 21952 marrepval0 22063 marrepval 22064 marepvval0 22068 marepvval 22069 submaval0 22082 mdetr0 22107 mdet0 22108 mdetunilem7 22120 mdetunilem8 22121 madufval 22139 maduval 22140 maducoeval2 22142 madutpos 22144 madugsum 22145 madurid 22146 minmar1val0 22149 minmar1val 22150 pmat0opsc 22200 pmat1opsc 22201 mat2pmatval 22226 cpm2mval 22252 decpmatid 22272 pmatcollpw2lem 22279 pmatcollpw3lem 22285 mply1topmatval 22306 mp2pm2mplem1 22308 mp2pm2mplem4 22311 ttgval 28126 ttgvalOLD 28127 smatfval 32775 ofceq 33095 reprval 33622 finxpeq1 36267 matunitlindflem1 36484 mnringmulrvald 42986 idfusubc 46640 digfval 47283 2arymaptfv 47337 itcoval 47347 |
Copyright terms: Public domain | W3C validator |