| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpoeq3dv | Structured version Visualization version GIF version | ||
| Description: An equality deduction for the maps-to notation restricted to the value of the operation. (Contributed by SO, 16-Jul-2018.) |
| Ref | Expression |
|---|---|
| mpoeq3dv.1 | ⊢ (𝜑 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| mpoeq3dv | ⊢ (𝜑 → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpoeq3dv.1 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐷) | |
| 2 | 1 | 3ad2ant1 1133 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝐶 = 𝐷) |
| 3 | 2 | mpoeq3dva 7484 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ∈ cmpo 7407 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-oprab 7409 df-mpo 7410 |
| This theorem is referenced by: ofeqd 7673 seqomeq12 8468 cantnfval 9682 seqeq2 14023 seqeq3 14024 relexpsucnnr 15044 idfusubc 17913 lsmfval 19619 phssip 21618 mamuval 22331 matsc 22388 marrepval0 22499 marrepval 22500 marepvval0 22504 marepvval 22505 submaval0 22518 mdetr0 22543 mdet0 22544 mdetunilem7 22556 mdetunilem8 22557 madufval 22575 maduval 22576 maducoeval2 22578 madutpos 22580 madugsum 22581 madurid 22582 minmar1val0 22585 minmar1val 22586 pmat0opsc 22636 pmat1opsc 22637 mat2pmatval 22662 cpm2mval 22688 decpmatid 22708 pmatcollpw2lem 22715 pmatcollpw3lem 22721 mply1topmatval 22742 mp2pm2mplem1 22744 mp2pm2mplem4 22747 seqseq123d 28232 ttgval 28854 smatfval 33826 ofceq 34128 reprval 34642 finxpeq1 37404 matunitlindflem1 37640 mnringmulrvald 44251 digfval 48577 2arymaptfv 48631 itcoval 48641 dfswapf2 49178 postcofval 49275 precofval 49278 precofval2 49280 prcofval 49289 |
| Copyright terms: Public domain | W3C validator |