| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpoeq3dv | Structured version Visualization version GIF version | ||
| Description: An equality deduction for the maps-to notation restricted to the value of the operation. (Contributed by SO, 16-Jul-2018.) |
| Ref | Expression |
|---|---|
| mpoeq3dv.1 | ⊢ (𝜑 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| mpoeq3dv | ⊢ (𝜑 → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpoeq3dv.1 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐷) | |
| 2 | 1 | 3ad2ant1 1133 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝐶 = 𝐷) |
| 3 | 2 | mpoeq3dva 7469 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∈ cmpo 7392 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-oprab 7394 df-mpo 7395 |
| This theorem is referenced by: ofeqd 7658 seqomeq12 8425 cantnfval 9628 seqeq2 13977 seqeq3 13978 relexpsucnnr 14998 idfusubc 17869 lsmfval 19575 phssip 21574 mamuval 22287 matsc 22344 marrepval0 22455 marrepval 22456 marepvval0 22460 marepvval 22461 submaval0 22474 mdetr0 22499 mdet0 22500 mdetunilem7 22512 mdetunilem8 22513 madufval 22531 maduval 22532 maducoeval2 22534 madutpos 22536 madugsum 22537 madurid 22538 minmar1val0 22541 minmar1val 22542 pmat0opsc 22592 pmat1opsc 22593 mat2pmatval 22618 cpm2mval 22644 decpmatid 22664 pmatcollpw2lem 22671 pmatcollpw3lem 22677 mply1topmatval 22698 mp2pm2mplem1 22700 mp2pm2mplem4 22703 seqseq123d 28187 ttgval 28809 smatfval 33792 ofceq 34094 reprval 34608 finxpeq1 37381 matunitlindflem1 37617 mnringmulrvald 44223 digfval 48590 2arymaptfv 48644 itcoval 48654 dfswapf2 49254 postcofval 49357 precofval 49360 precofval2 49362 prcofval 49371 |
| Copyright terms: Public domain | W3C validator |