| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpoeq3dv | Structured version Visualization version GIF version | ||
| Description: An equality deduction for the maps-to notation restricted to the value of the operation. (Contributed by SO, 16-Jul-2018.) |
| Ref | Expression |
|---|---|
| mpoeq3dv.1 | ⊢ (𝜑 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| mpoeq3dv | ⊢ (𝜑 → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpoeq3dv.1 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐷) | |
| 2 | 1 | 3ad2ant1 1133 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝐶 = 𝐷) |
| 3 | 2 | mpoeq3dva 7426 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∈ cmpo 7351 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-oprab 7353 df-mpo 7354 |
| This theorem is referenced by: ofeqd 7615 seqomeq12 8376 cantnfval 9564 seqeq2 13912 seqeq3 13913 relexpsucnnr 14932 idfusubc 17807 lsmfval 19517 phssip 21565 mamuval 22278 matsc 22335 marrepval0 22446 marrepval 22447 marepvval0 22451 marepvval 22452 submaval0 22465 mdetr0 22490 mdet0 22491 mdetunilem7 22503 mdetunilem8 22504 madufval 22522 maduval 22523 maducoeval2 22525 madutpos 22527 madugsum 22528 madurid 22529 minmar1val0 22532 minmar1val 22533 pmat0opsc 22583 pmat1opsc 22584 mat2pmatval 22609 cpm2mval 22635 decpmatid 22655 pmatcollpw2lem 22662 pmatcollpw3lem 22668 mply1topmatval 22689 mp2pm2mplem1 22691 mp2pm2mplem4 22694 seqseq123d 28185 ttgval 28820 smatfval 33762 ofceq 34064 reprval 34578 finxpeq1 37364 matunitlindflem1 37600 mnringmulrvald 44204 digfval 48586 2arymaptfv 48640 itcoval 48650 dfswapf2 49250 postcofval 49353 precofval 49356 precofval2 49358 prcofval 49367 |
| Copyright terms: Public domain | W3C validator |