![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpoeq3dv | Structured version Visualization version GIF version |
Description: An equality deduction for the maps-to notation restricted to the value of the operation. (Contributed by SO, 16-Jul-2018.) |
Ref | Expression |
---|---|
mpoeq3dv.1 | ⊢ (𝜑 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
mpoeq3dv | ⊢ (𝜑 → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpoeq3dv.1 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐷) | |
2 | 1 | 3ad2ant1 1133 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝐶 = 𝐷) |
3 | 2 | mpoeq3dva 7527 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ∈ cmpo 7450 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-oprab 7452 df-mpo 7453 |
This theorem is referenced by: ofeqd 7716 seqomeq12 8510 cantnfval 9737 seqeq2 14056 seqeq3 14057 relexpsucnnr 15074 idfusubc 17964 lsmfval 19680 phssip 21699 mamuval 22418 matsc 22477 marrepval0 22588 marrepval 22589 marepvval0 22593 marepvval 22594 submaval0 22607 mdetr0 22632 mdet0 22633 mdetunilem7 22645 mdetunilem8 22646 madufval 22664 maduval 22665 maducoeval2 22667 madutpos 22669 madugsum 22670 madurid 22671 minmar1val0 22674 minmar1val 22675 pmat0opsc 22725 pmat1opsc 22726 mat2pmatval 22751 cpm2mval 22777 decpmatid 22797 pmatcollpw2lem 22804 pmatcollpw3lem 22810 mply1topmatval 22831 mp2pm2mplem1 22833 mp2pm2mplem4 22836 seqseq123d 28310 ttgval 28901 ttgvalOLD 28902 smatfval 33741 ofceq 34061 reprval 34587 finxpeq1 37352 matunitlindflem1 37576 mnringmulrvald 44196 digfval 48331 2arymaptfv 48385 itcoval 48395 |
Copyright terms: Public domain | W3C validator |