Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oneltr Structured version   Visualization version   GIF version

Theorem oneltr 43212
Description: The elementhood relation on the ordinals is transitive. Theorem 1.9(ii) of [Schloeder] p. 1. See ontr1 6436. (Contributed by RP, 15-Jan-2025.)
Assertion
Ref Expression
oneltr ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴𝐵𝐵𝐶) → 𝐴𝐶))

Proof of Theorem oneltr
StepHypRef Expression
1 ontr1 6436 . 2 (𝐶 ∈ On → ((𝐴𝐵𝐵𝐶) → 𝐴𝐶))
213ad2ant3 1135 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴𝐵𝐵𝐶) → 𝐴𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087  wcel 2108  Oncon0 6390
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1089  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-v 3490  df-ss 3993  df-uni 4932  df-tr 5284  df-po 5607  df-so 5608  df-fr 5650  df-we 5652  df-ord 6393  df-on 6394
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator