Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oneltr Structured version   Visualization version   GIF version

Theorem oneltr 43203
Description: The elementhood relation on the ordinals is transitive. Theorem 1.9(ii) of [Schloeder] p. 1. See ontr1 6426. (Contributed by RP, 15-Jan-2025.)
Assertion
Ref Expression
oneltr ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴𝐵𝐵𝐶) → 𝐴𝐶))

Proof of Theorem oneltr
StepHypRef Expression
1 ontr1 6426 . 2 (𝐶 ∈ On → ((𝐴𝐵𝐵𝐶) → 𝐴𝐶))
213ad2ant3 1133 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴𝐵𝐵𝐶) → 𝐴𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085  wcel 2104  Oncon0 6380
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1963  ax-7 2003  ax-8 2106  ax-9 2114  ax-ext 2704
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1087  df-tru 1538  df-ex 1775  df-sb 2061  df-clab 2711  df-cleq 2725  df-clel 2812  df-ral 3058  df-v 3479  df-ss 3980  df-uni 4915  df-tr 5267  df-po 5590  df-so 5591  df-fr 5635  df-we 5637  df-ord 6383  df-on 6384
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator