Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oneltr Structured version   Visualization version   GIF version

Theorem oneltr 43238
Description: The elementhood relation on the ordinals is transitive. Theorem 1.9(ii) of [Schloeder] p. 1. See ontr1 6381. (Contributed by RP, 15-Jan-2025.)
Assertion
Ref Expression
oneltr ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴𝐵𝐵𝐶) → 𝐴𝐶))

Proof of Theorem oneltr
StepHypRef Expression
1 ontr1 6381 . 2 (𝐶 ∈ On → ((𝐴𝐵𝐵𝐶) → 𝐴𝐶))
213ad2ant3 1135 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴𝐵𝐵𝐶) → 𝐴𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wcel 2109  Oncon0 6334
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-v 3452  df-ss 3933  df-uni 4874  df-tr 5217  df-po 5548  df-so 5549  df-fr 5593  df-we 5595  df-ord 6337  df-on 6338
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator