![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > oneltr | Structured version Visualization version GIF version |
Description: The elementhood relation on the ordinals is transitive. Theorem 1.9(ii) of [Schloeder] p. 1. See ontr1 6426. (Contributed by RP, 15-Jan-2025.) |
Ref | Expression |
---|---|
oneltr | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ontr1 6426 | . 2 ⊢ (𝐶 ∈ On → ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ 𝐶)) | |
2 | 1 | 3ad2ant3 1133 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 ∈ wcel 2104 Oncon0 6380 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1963 ax-7 2003 ax-8 2106 ax-9 2114 ax-ext 2704 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1087 df-tru 1538 df-ex 1775 df-sb 2061 df-clab 2711 df-cleq 2725 df-clel 2812 df-ral 3058 df-v 3479 df-ss 3980 df-uni 4915 df-tr 5267 df-po 5590 df-so 5591 df-fr 5635 df-we 5637 df-ord 6383 df-on 6384 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |