![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > oneptr | Structured version Visualization version GIF version |
Description: The strict order on the ordinals is transitive. Theorem 1.9(ii) of [Schloeder] p. 1. (Contributed by RP, 15-Jan-2025.) |
Ref | Expression |
---|---|
oneptr | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 E 𝐵 ∧ 𝐵 E 𝐶) → 𝐴 E 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | epweon 7794 | . 2 ⊢ E We On | |
2 | weso 5680 | . 2 ⊢ ( E We On → E Or On) | |
3 | sopo 5616 | . . 3 ⊢ ( E Or On → E Po On) | |
4 | potr 5610 | . . . 4 ⊢ (( E Po On ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On)) → ((𝐴 E 𝐵 ∧ 𝐵 E 𝐶) → 𝐴 E 𝐶)) | |
5 | 4 | ex 412 | . . 3 ⊢ ( E Po On → ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 E 𝐵 ∧ 𝐵 E 𝐶) → 𝐴 E 𝐶))) |
6 | 3, 5 | syl 17 | . 2 ⊢ ( E Or On → ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 E 𝐵 ∧ 𝐵 E 𝐶) → 𝐴 E 𝐶))) |
7 | 1, 2, 6 | mp2b 10 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 E 𝐵 ∧ 𝐵 E 𝐶) → 𝐴 E 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2106 class class class wbr 5148 E cep 5588 Po wpo 5595 Or wor 5596 We wwe 5640 Oncon0 6386 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-tr 5266 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-ord 6389 df-on 6390 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |