Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oneptr Structured version   Visualization version   GIF version

Theorem oneptr 42825
Description: The strict order on the ordinals is transitive. Theorem 1.9(ii) of [Schloeder] p. 1. (Contributed by RP, 15-Jan-2025.)
Assertion
Ref Expression
oneptr ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 E 𝐵𝐵 E 𝐶) → 𝐴 E 𝐶))

Proof of Theorem oneptr
StepHypRef Expression
1 epweon 7778 . 2 E We On
2 weso 5669 . 2 ( E We On → E Or On)
3 sopo 5609 . . 3 ( E Or On → E Po On)
4 potr 5603 . . . 4 (( E Po On ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On)) → ((𝐴 E 𝐵𝐵 E 𝐶) → 𝐴 E 𝐶))
54ex 411 . . 3 ( E Po On → ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 E 𝐵𝐵 E 𝐶) → 𝐴 E 𝐶)))
63, 5syl 17 . 2 ( E Or On → ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 E 𝐵𝐵 E 𝐶) → 𝐴 E 𝐶)))
71, 2, 6mp2b 10 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 E 𝐵𝐵 E 𝐶) → 𝐴 E 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084  wcel 2098   class class class wbr 5149   E cep 5581   Po wpo 5588   Or wor 5589   We wwe 5632  Oncon0 6371
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-ne 2930  df-ral 3051  df-rex 3060  df-rab 3419  df-v 3463  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-br 5150  df-opab 5212  df-tr 5267  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-ord 6374  df-on 6375
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator