| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > oneptr | Structured version Visualization version GIF version | ||
| Description: The strict order on the ordinals is transitive. Theorem 1.9(ii) of [Schloeder] p. 1. (Contributed by RP, 15-Jan-2025.) |
| Ref | Expression |
|---|---|
| oneptr | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 E 𝐵 ∧ 𝐵 E 𝐶) → 𝐴 E 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | epweon 7751 | . 2 ⊢ E We On | |
| 2 | weso 5629 | . 2 ⊢ ( E We On → E Or On) | |
| 3 | sopo 5565 | . . 3 ⊢ ( E Or On → E Po On) | |
| 4 | potr 5559 | . . . 4 ⊢ (( E Po On ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On)) → ((𝐴 E 𝐵 ∧ 𝐵 E 𝐶) → 𝐴 E 𝐶)) | |
| 5 | 4 | ex 412 | . . 3 ⊢ ( E Po On → ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 E 𝐵 ∧ 𝐵 E 𝐶) → 𝐴 E 𝐶))) |
| 6 | 3, 5 | syl 17 | . 2 ⊢ ( E Or On → ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 E 𝐵 ∧ 𝐵 E 𝐶) → 𝐴 E 𝐶))) |
| 7 | 1, 2, 6 | mp2b 10 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 E 𝐵 ∧ 𝐵 E 𝐶) → 𝐴 E 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2109 class class class wbr 5107 E cep 5537 Po wpo 5544 Or wor 5545 We wwe 5590 Oncon0 6332 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-tr 5215 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-ord 6335 df-on 6336 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |