Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oneptr Structured version   Visualization version   GIF version

Theorem oneptr 43287
Description: The strict order on the ordinals is transitive. Theorem 1.9(ii) of [Schloeder] p. 1. (Contributed by RP, 15-Jan-2025.)
Assertion
Ref Expression
oneptr ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 E 𝐵𝐵 E 𝐶) → 𝐴 E 𝐶))

Proof of Theorem oneptr
StepHypRef Expression
1 epweon 7708 . 2 E We On
2 weso 5607 . 2 ( E We On → E Or On)
3 sopo 5543 . . 3 ( E Or On → E Po On)
4 potr 5537 . . . 4 (( E Po On ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On)) → ((𝐴 E 𝐵𝐵 E 𝐶) → 𝐴 E 𝐶))
54ex 412 . . 3 ( E Po On → ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 E 𝐵𝐵 E 𝐶) → 𝐴 E 𝐶)))
63, 5syl 17 . 2 ( E Or On → ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 E 𝐵𝐵 E 𝐶) → 𝐴 E 𝐶)))
71, 2, 6mp2b 10 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 E 𝐵𝐵 E 𝐶) → 𝐴 E 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wcel 2111   class class class wbr 5091   E cep 5515   Po wpo 5522   Or wor 5523   We wwe 5568  Oncon0 6306
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-tr 5199  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-ord 6309  df-on 6310
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator