Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oneptr Structured version   Visualization version   GIF version

Theorem oneptr 43246
Description: The strict order on the ordinals is transitive. Theorem 1.9(ii) of [Schloeder] p. 1. (Contributed by RP, 15-Jan-2025.)
Assertion
Ref Expression
oneptr ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 E 𝐵𝐵 E 𝐶) → 𝐴 E 𝐶))

Proof of Theorem oneptr
StepHypRef Expression
1 epweon 7774 . 2 E We On
2 weso 5650 . 2 ( E We On → E Or On)
3 sopo 5585 . . 3 ( E Or On → E Po On)
4 potr 5579 . . . 4 (( E Po On ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On)) → ((𝐴 E 𝐵𝐵 E 𝐶) → 𝐴 E 𝐶))
54ex 412 . . 3 ( E Po On → ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 E 𝐵𝐵 E 𝐶) → 𝐴 E 𝐶)))
63, 5syl 17 . 2 ( E Or On → ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 E 𝐵𝐵 E 𝐶) → 𝐴 E 𝐶)))
71, 2, 6mp2b 10 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 E 𝐵𝐵 E 𝐶) → 𝐴 E 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wcel 2109   class class class wbr 5124   E cep 5557   Po wpo 5564   Or wor 5565   We wwe 5610  Oncon0 6357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-tr 5235  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-ord 6360  df-on 6361
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator