![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ontr1 | Structured version Visualization version GIF version |
Description: Transitive law for ordinal numbers. Theorem 7M(b) of [Enderton] p. 192. Theorem 1.9(ii) of [Schloeder] p. 1. (Contributed by NM, 11-Aug-1994.) |
Ref | Expression |
---|---|
ontr1 | ⊢ (𝐶 ∈ On → ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eloni 6405 | . 2 ⊢ (𝐶 ∈ On → Ord 𝐶) | |
2 | ordtr1 6438 | . 2 ⊢ (Ord 𝐶 → ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ 𝐶)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝐶 ∈ On → ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 Ord word 6394 Oncon0 6395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-v 3490 df-ss 3993 df-uni 4932 df-tr 5284 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-ord 6398 df-on 6399 |
This theorem is referenced by: epweon 7810 smoiun 8417 dif20el 8561 oeordi 8643 omabs 8707 omsmolem 8713 naddel12 8756 naddsuc2 8757 cofsmo 10338 cfsmolem 10339 inar1 10844 grur1a 10888 nosupno 27766 nosupbnd2lem1 27778 noinfno 27781 noinfbnd2lem1 27793 lrrecpo 27992 addsproplem2 28021 onexoegt 43205 oneltr 43217 oaun3lem1 43336 nadd2rabtr 43346 naddwordnexlem0 43358 oawordex3 43362 naddwordnexlem4 43363 |
Copyright terms: Public domain | W3C validator |