| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ontr1 | Structured version Visualization version GIF version | ||
| Description: Transitive law for ordinal numbers. Theorem 7M(b) of [Enderton] p. 192. Theorem 1.9(ii) of [Schloeder] p. 1. (Contributed by NM, 11-Aug-1994.) |
| Ref | Expression |
|---|---|
| ontr1 | ⊢ (𝐶 ∈ On → ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eloni 6317 | . 2 ⊢ (𝐶 ∈ On → Ord 𝐶) | |
| 2 | ordtr1 6351 | . 2 ⊢ (Ord 𝐶 → ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ 𝐶)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐶 ∈ On → ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 Ord word 6306 Oncon0 6307 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-v 3438 df-ss 3920 df-uni 4859 df-tr 5200 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-ord 6310 df-on 6311 |
| This theorem is referenced by: epweon 7711 smoiun 8284 dif20el 8423 oeordi 8505 omabs 8569 omsmolem 8575 naddel12 8618 naddsuc2 8619 cofsmo 10163 cfsmolem 10164 inar1 10669 grur1a 10713 nosupno 27613 nosupbnd2lem1 27625 noinfno 27628 noinfbnd2lem1 27640 lrrecpo 27853 addsproplem2 27882 onexoegt 43221 oneltr 43233 oaun3lem1 43351 nadd2rabtr 43361 naddwordnexlem0 43373 oawordex3 43377 naddwordnexlem4 43378 |
| Copyright terms: Public domain | W3C validator |