| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ontr1 | Structured version Visualization version GIF version | ||
| Description: Transitive law for ordinal numbers. Theorem 7M(b) of [Enderton] p. 192. Theorem 1.9(ii) of [Schloeder] p. 1. (Contributed by NM, 11-Aug-1994.) |
| Ref | Expression |
|---|---|
| ontr1 | ⊢ (𝐶 ∈ On → ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eloni 6316 | . 2 ⊢ (𝐶 ∈ On → Ord 𝐶) | |
| 2 | ordtr1 6350 | . 2 ⊢ (Ord 𝐶 → ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ 𝐶)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐶 ∈ On → ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2111 Ord word 6305 Oncon0 6306 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-v 3438 df-ss 3914 df-uni 4857 df-tr 5197 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-ord 6309 df-on 6310 |
| This theorem is referenced by: epweon 7708 smoiun 8281 dif20el 8420 oeordi 8502 omabs 8566 omsmolem 8572 naddel12 8615 naddsuc2 8616 cofsmo 10160 cfsmolem 10161 inar1 10666 grur1a 10710 nosupno 27642 nosupbnd2lem1 27654 noinfno 27657 noinfbnd2lem1 27669 lrrecpo 27884 addsproplem2 27913 r1elcl 35109 onexoegt 43347 oneltr 43359 oaun3lem1 43477 nadd2rabtr 43487 naddwordnexlem0 43499 oawordex3 43503 naddwordnexlem4 43504 |
| Copyright terms: Public domain | W3C validator |