MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ontr1 Structured version   Visualization version   GIF version

Theorem ontr1 6379
Description: Transitive law for ordinal numbers. Theorem 7M(b) of [Enderton] p. 192. Theorem 1.9(ii) of [Schloeder] p. 1. (Contributed by NM, 11-Aug-1994.)
Assertion
Ref Expression
ontr1 (𝐶 ∈ On → ((𝐴𝐵𝐵𝐶) → 𝐴𝐶))

Proof of Theorem ontr1
StepHypRef Expression
1 eloni 6342 . 2 (𝐶 ∈ On → Ord 𝐶)
2 ordtr1 6376 . 2 (Ord 𝐶 → ((𝐴𝐵𝐵𝐶) → 𝐴𝐶))
31, 2syl 17 1 (𝐶 ∈ On → ((𝐴𝐵𝐵𝐶) → 𝐴𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  Ord word 6331  Oncon0 6332
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-v 3449  df-ss 3931  df-uni 4872  df-tr 5215  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-ord 6335  df-on 6336
This theorem is referenced by:  epweon  7751  smoiun  8330  dif20el  8469  oeordi  8551  omabs  8615  omsmolem  8621  naddel12  8664  naddsuc2  8665  cofsmo  10222  cfsmolem  10223  inar1  10728  grur1a  10772  nosupno  27615  nosupbnd2lem1  27627  noinfno  27630  noinfbnd2lem1  27642  lrrecpo  27848  addsproplem2  27877  onexoegt  43233  oneltr  43245  oaun3lem1  43363  nadd2rabtr  43373  naddwordnexlem0  43385  oawordex3  43389  naddwordnexlem4  43390
  Copyright terms: Public domain W3C validator