MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ontr1 Structured version   Visualization version   GIF version

Theorem ontr1 6367
Description: Transitive law for ordinal numbers. Theorem 7M(b) of [Enderton] p. 192. Theorem 1.9(ii) of [Schloeder] p. 1. (Contributed by NM, 11-Aug-1994.)
Assertion
Ref Expression
ontr1 (𝐶 ∈ On → ((𝐴𝐵𝐵𝐶) → 𝐴𝐶))

Proof of Theorem ontr1
StepHypRef Expression
1 eloni 6330 . 2 (𝐶 ∈ On → Ord 𝐶)
2 ordtr1 6364 . 2 (Ord 𝐶 → ((𝐴𝐵𝐵𝐶) → 𝐴𝐶))
31, 2syl 17 1 (𝐶 ∈ On → ((𝐴𝐵𝐵𝐶) → 𝐴𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  Ord word 6319  Oncon0 6320
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-v 3446  df-ss 3928  df-uni 4868  df-tr 5210  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-ord 6323  df-on 6324
This theorem is referenced by:  epweon  7731  smoiun  8307  dif20el  8446  oeordi  8528  omabs  8592  omsmolem  8598  naddel12  8641  naddsuc2  8642  cofsmo  10198  cfsmolem  10199  inar1  10704  grur1a  10748  nosupno  27591  nosupbnd2lem1  27603  noinfno  27606  noinfbnd2lem1  27618  lrrecpo  27824  addsproplem2  27853  onexoegt  43206  oneltr  43218  oaun3lem1  43336  nadd2rabtr  43346  naddwordnexlem0  43358  oawordex3  43362  naddwordnexlem4  43363
  Copyright terms: Public domain W3C validator