Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ontr1 | Structured version Visualization version GIF version |
Description: Transitive law for ordinal numbers. Theorem 7M(b) of [Enderton] p. 192. (Contributed by NM, 11-Aug-1994.) |
Ref | Expression |
---|---|
ontr1 | ⊢ (𝐶 ∈ On → ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eloni 6261 | . 2 ⊢ (𝐶 ∈ On → Ord 𝐶) | |
2 | ordtr1 6294 | . 2 ⊢ (Ord 𝐶 → ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ 𝐶)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝐶 ∈ On → ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 Ord word 6250 Oncon0 6251 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-v 3424 df-in 3890 df-ss 3900 df-uni 4837 df-tr 5188 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-ord 6254 df-on 6255 |
This theorem is referenced by: smoiun 8163 dif20el 8297 oeordi 8380 omabs 8441 omsmolem 8447 cofsmo 9956 cfsmolem 9957 inar1 10462 grur1a 10506 nosupno 33833 nosupbnd2lem1 33845 noinfno 33848 noinfbnd2lem1 33860 lrrecpo 34025 |
Copyright terms: Public domain | W3C validator |