| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ontr1 | Structured version Visualization version GIF version | ||
| Description: Transitive law for ordinal numbers. Theorem 7M(b) of [Enderton] p. 192. Theorem 1.9(ii) of [Schloeder] p. 1. (Contributed by NM, 11-Aug-1994.) |
| Ref | Expression |
|---|---|
| ontr1 | ⊢ (𝐶 ∈ On → ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eloni 6373 | . 2 ⊢ (𝐶 ∈ On → Ord 𝐶) | |
| 2 | ordtr1 6407 | . 2 ⊢ (Ord 𝐶 → ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ 𝐶)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐶 ∈ On → ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2107 Ord word 6362 Oncon0 6363 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-v 3465 df-ss 3948 df-uni 4888 df-tr 5240 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-ord 6366 df-on 6367 |
| This theorem is referenced by: epweon 7777 smoiun 8383 dif20el 8525 oeordi 8607 omabs 8671 omsmolem 8677 naddel12 8720 naddsuc2 8721 cofsmo 10291 cfsmolem 10292 inar1 10797 grur1a 10841 nosupno 27684 nosupbnd2lem1 27696 noinfno 27699 noinfbnd2lem1 27711 lrrecpo 27910 addsproplem2 27939 onexoegt 43219 oneltr 43231 oaun3lem1 43349 nadd2rabtr 43359 naddwordnexlem0 43371 oawordex3 43375 naddwordnexlem4 43376 |
| Copyright terms: Public domain | W3C validator |