MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ontr1 Structured version   Visualization version   GIF version

Theorem ontr1 6410
Description: Transitive law for ordinal numbers. Theorem 7M(b) of [Enderton] p. 192. Theorem 1.9(ii) of [Schloeder] p. 1. (Contributed by NM, 11-Aug-1994.)
Assertion
Ref Expression
ontr1 (𝐶 ∈ On → ((𝐴𝐵𝐵𝐶) → 𝐴𝐶))

Proof of Theorem ontr1
StepHypRef Expression
1 eloni 6373 . 2 (𝐶 ∈ On → Ord 𝐶)
2 ordtr1 6407 . 2 (Ord 𝐶 → ((𝐴𝐵𝐵𝐶) → 𝐴𝐶))
31, 2syl 17 1 (𝐶 ∈ On → ((𝐴𝐵𝐵𝐶) → 𝐴𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2107  Ord word 6362  Oncon0 6363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1542  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ral 3051  df-v 3465  df-ss 3948  df-uni 4888  df-tr 5240  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-ord 6366  df-on 6367
This theorem is referenced by:  epweon  7777  smoiun  8383  dif20el  8525  oeordi  8607  omabs  8671  omsmolem  8677  naddel12  8720  naddsuc2  8721  cofsmo  10291  cfsmolem  10292  inar1  10797  grur1a  10841  nosupno  27684  nosupbnd2lem1  27696  noinfno  27699  noinfbnd2lem1  27711  lrrecpo  27910  addsproplem2  27939  onexoegt  43219  oneltr  43231  oaun3lem1  43349  nadd2rabtr  43359  naddwordnexlem0  43371  oawordex3  43375  naddwordnexlem4  43376
  Copyright terms: Public domain W3C validator