Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ontr1 | Structured version Visualization version GIF version |
Description: Transitive law for ordinal numbers. Theorem 7M(b) of [Enderton] p. 192. (Contributed by NM, 11-Aug-1994.) |
Ref | Expression |
---|---|
ontr1 | ⊢ (𝐶 ∈ On → ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eloni 6223 | . 2 ⊢ (𝐶 ∈ On → Ord 𝐶) | |
2 | ordtr1 6256 | . 2 ⊢ (Ord 𝐶 → ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ 𝐶)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝐶 ∈ On → ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∈ wcel 2110 Ord word 6212 Oncon0 6213 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-ext 2708 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1546 df-ex 1788 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3066 df-v 3410 df-in 3873 df-ss 3883 df-uni 4820 df-tr 5162 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-ord 6216 df-on 6217 |
This theorem is referenced by: smoiun 8098 dif20el 8232 oeordi 8315 omabs 8376 omsmolem 8382 cofsmo 9883 cfsmolem 9884 inar1 10389 grur1a 10433 nosupno 33643 nosupbnd2lem1 33655 noinfno 33658 noinfbnd2lem1 33670 lrrecpo 33835 |
Copyright terms: Public domain | W3C validator |