MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opid Structured version   Visualization version   GIF version

Theorem opid 4821
Description: The ordered pair 𝐴, 𝐴 in Kuratowski's representation. Inference form of opidg 4820. (Contributed by FL, 28-Dec-2011.) (Proof shortened by AV, 16-Feb-2022.) (Avoid depending on this detail.)
Hypothesis
Ref Expression
opid.1 𝐴 ∈ V
Assertion
Ref Expression
opid 𝐴, 𝐴⟩ = {{𝐴}}

Proof of Theorem opid
StepHypRef Expression
1 opid.1 . 2 𝐴 ∈ V
2 opidg 4820 . 2 (𝐴 ∈ V → ⟨𝐴, 𝐴⟩ = {{𝐴}})
31, 2ax-mp 5 1 𝐴, 𝐴⟩ = {{𝐴}}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2108  Vcvv 3422  {csn 4558  cop 4564
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-dif 3886  df-un 3888  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565
This theorem is referenced by:  dmsnsnsn  6112  funopg  6452  vtxval3sn  27316  iedgval3sn  27317
  Copyright terms: Public domain W3C validator