MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opid Structured version   Visualization version   GIF version

Theorem opid 4874
Description: The ordered pair 𝐴, 𝐴 in Kuratowski's representation. Inference form of opidg 4873. (Contributed by FL, 28-Dec-2011.) (Proof shortened by AV, 16-Feb-2022.) (Avoid depending on this detail.)
Hypothesis
Ref Expression
opid.1 𝐴 ∈ V
Assertion
Ref Expression
opid 𝐴, 𝐴⟩ = {{𝐴}}

Proof of Theorem opid
StepHypRef Expression
1 opid.1 . 2 𝐴 ∈ V
2 opidg 4873 . 2 (𝐴 ∈ V → ⟨𝐴, 𝐴⟩ = {{𝐴}})
31, 2ax-mp 5 1 𝐴, 𝐴⟩ = {{𝐴}}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  Vcvv 3464  {csn 4606  cop 4612
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-v 3466  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613
This theorem is referenced by:  dmsnsnsn  6214  funopg  6575  vtxval3sn  29027  iedgval3sn  29028
  Copyright terms: Public domain W3C validator