| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opid | Structured version Visualization version GIF version | ||
| Description: The ordered pair 〈𝐴, 𝐴〉 in Kuratowski's representation. Inference form of opidg 4841. (Contributed by FL, 28-Dec-2011.) (Proof shortened by AV, 16-Feb-2022.) (Avoid depending on this detail.) |
| Ref | Expression |
|---|---|
| opid.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| opid | ⊢ 〈𝐴, 𝐴〉 = {{𝐴}} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opid.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | opidg 4841 | . 2 ⊢ (𝐴 ∈ V → 〈𝐴, 𝐴〉 = {{𝐴}}) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 〈𝐴, 𝐴〉 = {{𝐴}} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 Vcvv 3436 {csn 4573 〈cop 4579 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 |
| This theorem is referenced by: dmsnsnsn 6167 funopg 6515 vtxval3sn 29021 iedgval3sn 29022 |
| Copyright terms: Public domain | W3C validator |