| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opid | Structured version Visualization version GIF version | ||
| Description: The ordered pair 〈𝐴, 𝐴〉 in Kuratowski's representation. Inference form of opidg 4873. (Contributed by FL, 28-Dec-2011.) (Proof shortened by AV, 16-Feb-2022.) (Avoid depending on this detail.) |
| Ref | Expression |
|---|---|
| opid.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| opid | ⊢ 〈𝐴, 𝐴〉 = {{𝐴}} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opid.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | opidg 4873 | . 2 ⊢ (𝐴 ∈ V → 〈𝐴, 𝐴〉 = {{𝐴}}) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 〈𝐴, 𝐴〉 = {{𝐴}} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 Vcvv 3464 {csn 4606 〈cop 4612 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 |
| This theorem is referenced by: dmsnsnsn 6214 funopg 6575 vtxval3sn 29027 iedgval3sn 29028 |
| Copyright terms: Public domain | W3C validator |