Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > opid | Structured version Visualization version GIF version |
Description: The ordered pair 〈𝐴, 𝐴〉 in Kuratowski's representation. Inference form of opidg 4803. (Contributed by FL, 28-Dec-2011.) (Proof shortened by AV, 16-Feb-2022.) (Avoid depending on this detail.) |
Ref | Expression |
---|---|
opid.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
opid | ⊢ 〈𝐴, 𝐴〉 = {{𝐴}} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opid.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | opidg 4803 | . 2 ⊢ (𝐴 ∈ V → 〈𝐴, 𝐴〉 = {{𝐴}}) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 〈𝐴, 𝐴〉 = {{𝐴}} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1543 ∈ wcel 2110 Vcvv 3408 {csn 4541 〈cop 4547 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-ext 2708 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-v 3410 df-dif 3869 df-un 3871 df-nul 4238 df-if 4440 df-sn 4542 df-pr 4544 df-op 4548 |
This theorem is referenced by: dmsnsnsn 6083 funopg 6414 vtxval3sn 27134 iedgval3sn 27135 |
Copyright terms: Public domain | W3C validator |