|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > opid | Structured version Visualization version GIF version | ||
| Description: The ordered pair 〈𝐴, 𝐴〉 in Kuratowski's representation. Inference form of opidg 4892. (Contributed by FL, 28-Dec-2011.) (Proof shortened by AV, 16-Feb-2022.) (Avoid depending on this detail.) | 
| Ref | Expression | 
|---|---|
| opid.1 | ⊢ 𝐴 ∈ V | 
| Ref | Expression | 
|---|---|
| opid | ⊢ 〈𝐴, 𝐴〉 = {{𝐴}} | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | opid.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | opidg 4892 | . 2 ⊢ (𝐴 ∈ V → 〈𝐴, 𝐴〉 = {{𝐴}}) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 〈𝐴, 𝐴〉 = {{𝐴}} | 
| Colors of variables: wff setvar class | 
| Syntax hints: = wceq 1540 ∈ wcel 2108 Vcvv 3480 {csn 4626 〈cop 4632 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-v 3482 df-dif 3954 df-un 3956 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 | 
| This theorem is referenced by: dmsnsnsn 6240 funopg 6600 vtxval3sn 29060 iedgval3sn 29061 | 
| Copyright terms: Public domain | W3C validator |