![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opid | Structured version Visualization version GIF version |
Description: The ordered pair 〈𝐴, 𝐴〉 in Kuratowski's representation. Inference form of opidg 4916. (Contributed by FL, 28-Dec-2011.) (Proof shortened by AV, 16-Feb-2022.) (Avoid depending on this detail.) |
Ref | Expression |
---|---|
opid.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
opid | ⊢ 〈𝐴, 𝐴〉 = {{𝐴}} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opid.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | opidg 4916 | . 2 ⊢ (𝐴 ∈ V → 〈𝐴, 𝐴〉 = {{𝐴}}) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 〈𝐴, 𝐴〉 = {{𝐴}} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2108 Vcvv 3488 {csn 4648 〈cop 4654 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 |
This theorem is referenced by: dmsnsnsn 6251 funopg 6612 vtxval3sn 29078 iedgval3sn 29079 |
Copyright terms: Public domain | W3C validator |