![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opid | Structured version Visualization version GIF version |
Description: The ordered pair ⟨𝐴, 𝐴⟩ in Kuratowski's representation. Inference form of opidg 4892. (Contributed by FL, 28-Dec-2011.) (Proof shortened by AV, 16-Feb-2022.) (Avoid depending on this detail.) |
Ref | Expression |
---|---|
opid.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
opid | ⊢ ⟨𝐴, 𝐴⟩ = {{𝐴}} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opid.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | opidg 4892 | . 2 ⊢ (𝐴 ∈ V → ⟨𝐴, 𝐴⟩ = {{𝐴}}) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ⟨𝐴, 𝐴⟩ = {{𝐴}} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 ∈ wcel 2105 Vcvv 3473 {csn 4628 ⟨cop 4634 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 |
This theorem is referenced by: dmsnsnsn 6219 funopg 6582 vtxval3sn 28585 iedgval3sn 28586 |
Copyright terms: Public domain | W3C validator |