| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vtxval3sn | Structured version Visualization version GIF version | ||
| Description: Degenerated case 3 for vertices: The set of vertices of a singleton containing a singleton containing a singleton is the innermost singleton. (Contributed by AV, 24-Sep-2020.) (Avoid depending on this detail.) |
| Ref | Expression |
|---|---|
| vtxval3sn.a | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| vtxval3sn | ⊢ (Vtx‘{{{𝐴}}}) = {𝐴} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vtxval3sn.a | . 2 ⊢ 𝐴 ∈ V | |
| 2 | 1 | opid 4846 | . . . 4 ⊢ 〈𝐴, 𝐴〉 = {{𝐴}} |
| 3 | 2 | eqcomi 2742 | . . 3 ⊢ {{𝐴}} = 〈𝐴, 𝐴〉 |
| 4 | 3 | sneqi 4588 | . 2 ⊢ {{{𝐴}}} = {〈𝐴, 𝐴〉} |
| 5 | 1, 4 | vtxvalsnop 29030 | 1 ⊢ (Vtx‘{{{𝐴}}}) = {𝐴} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2113 Vcvv 3438 {csn 4577 〈cop 4583 ‘cfv 6489 Vtxcvtx 28985 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-ral 3050 df-rex 3059 df-rab 3398 df-v 3440 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-iota 6445 df-fun 6491 df-fv 6497 df-1st 7930 df-vtx 28987 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |