MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtxval3sn Structured version   Visualization version   GIF version

Theorem vtxval3sn 29075
Description: Degenerated case 3 for vertices: The set of vertices of a singleton containing a singleton containing a singleton is the innermost singleton. (Contributed by AV, 24-Sep-2020.) (Avoid depending on this detail.)
Hypothesis
Ref Expression
vtxval3sn.a 𝐴 ∈ V
Assertion
Ref Expression
vtxval3sn (Vtx‘{{{𝐴}}}) = {𝐴}

Proof of Theorem vtxval3sn
StepHypRef Expression
1 vtxval3sn.a . 2 𝐴 ∈ V
21opid 4898 . . . 4 𝐴, 𝐴⟩ = {{𝐴}}
32eqcomi 2744 . . 3 {{𝐴}} = ⟨𝐴, 𝐴
43sneqi 4642 . 2 {{{𝐴}}} = {⟨𝐴, 𝐴⟩}
51, 4vtxvalsnop 29073 1 (Vtx‘{{{𝐴}}}) = {𝐴}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  wcel 2106  Vcvv 3478  {csn 4631  cop 4637  cfv 6563  Vtxcvtx 29028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-iota 6516  df-fun 6565  df-fv 6571  df-1st 8013  df-vtx 29030
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator