MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtxval3sn Structured version   Visualization version   GIF version

Theorem vtxval3sn 29027
Description: Degenerated case 3 for vertices: The set of vertices of a singleton containing a singleton containing a singleton is the innermost singleton. (Contributed by AV, 24-Sep-2020.) (Avoid depending on this detail.)
Hypothesis
Ref Expression
vtxval3sn.a 𝐴 ∈ V
Assertion
Ref Expression
vtxval3sn (Vtx‘{{{𝐴}}}) = {𝐴}

Proof of Theorem vtxval3sn
StepHypRef Expression
1 vtxval3sn.a . 2 𝐴 ∈ V
21opid 4874 . . . 4 𝐴, 𝐴⟩ = {{𝐴}}
32eqcomi 2745 . . 3 {{𝐴}} = ⟨𝐴, 𝐴
43sneqi 4617 . 2 {{{𝐴}}} = {⟨𝐴, 𝐴⟩}
51, 4vtxvalsnop 29025 1 (Vtx‘{{{𝐴}}}) = {𝐴}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  Vcvv 3464  {csn 4606  cop 4612  cfv 6536  Vtxcvtx 28980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-iota 6489  df-fun 6538  df-fv 6544  df-1st 7993  df-vtx 28982
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator