MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmsnsnsn Structured version   Visualization version   GIF version

Theorem dmsnsnsn 6112
Description: The domain of the singleton of the singleton of a singleton. (Contributed by NM, 15-Sep-2004.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
dmsnsnsn dom {{{𝐴}}} = {𝐴}

Proof of Theorem dmsnsnsn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 vex 3426 . . . . . . . 8 𝑥 ∈ V
21opid 4821 . . . . . . 7 𝑥, 𝑥⟩ = {{𝑥}}
3 sneq 4568 . . . . . . . 8 (𝑥 = 𝐴 → {𝑥} = {𝐴})
43sneqd 4570 . . . . . . 7 (𝑥 = 𝐴 → {{𝑥}} = {{𝐴}})
52, 4eqtrid 2790 . . . . . 6 (𝑥 = 𝐴 → ⟨𝑥, 𝑥⟩ = {{𝐴}})
65sneqd 4570 . . . . 5 (𝑥 = 𝐴 → {⟨𝑥, 𝑥⟩} = {{{𝐴}}})
76dmeqd 5803 . . . 4 (𝑥 = 𝐴 → dom {⟨𝑥, 𝑥⟩} = dom {{{𝐴}}})
87, 3eqeq12d 2754 . . 3 (𝑥 = 𝐴 → (dom {⟨𝑥, 𝑥⟩} = {𝑥} ↔ dom {{{𝐴}}} = {𝐴}))
91dmsnop 6108 . . 3 dom {⟨𝑥, 𝑥⟩} = {𝑥}
108, 9vtoclg 3495 . 2 (𝐴 ∈ V → dom {{{𝐴}}} = {𝐴})
11 0ex 5226 . . . . 5 ∅ ∈ V
1211snid 4594 . . . 4 ∅ ∈ {∅}
13 dmsn0el 6103 . . . 4 (∅ ∈ {∅} → dom {{∅}} = ∅)
1412, 13ax-mp 5 . . 3 dom {{∅}} = ∅
15 snprc 4650 . . . . . . 7 𝐴 ∈ V ↔ {𝐴} = ∅)
1615biimpi 215 . . . . . 6 𝐴 ∈ V → {𝐴} = ∅)
1716sneqd 4570 . . . . 5 𝐴 ∈ V → {{𝐴}} = {∅})
1817sneqd 4570 . . . 4 𝐴 ∈ V → {{{𝐴}}} = {{∅}})
1918dmeqd 5803 . . 3 𝐴 ∈ V → dom {{{𝐴}}} = dom {{∅}})
2014, 19, 163eqtr4a 2805 . 2 𝐴 ∈ V → dom {{{𝐴}}} = {𝐴})
2110, 20pm2.61i 182 1 dom {{{𝐴}}} = {𝐴}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1539  wcel 2108  Vcvv 3422  c0 4253  {csn 4558  cop 4564  dom cdm 5580
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-xp 5586  df-dm 5590
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator