MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmsnsnsn Structured version   Visualization version   GIF version

Theorem dmsnsnsn 6044
Description: The domain of the singleton of the singleton of a singleton. (Contributed by NM, 15-Sep-2004.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
dmsnsnsn dom {{{𝐴}}} = {𝐴}

Proof of Theorem dmsnsnsn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 vex 3444 . . . . . . . 8 𝑥 ∈ V
21opid 4785 . . . . . . 7 𝑥, 𝑥⟩ = {{𝑥}}
3 sneq 4535 . . . . . . . 8 (𝑥 = 𝐴 → {𝑥} = {𝐴})
43sneqd 4537 . . . . . . 7 (𝑥 = 𝐴 → {{𝑥}} = {{𝐴}})
52, 4syl5eq 2845 . . . . . 6 (𝑥 = 𝐴 → ⟨𝑥, 𝑥⟩ = {{𝐴}})
65sneqd 4537 . . . . 5 (𝑥 = 𝐴 → {⟨𝑥, 𝑥⟩} = {{{𝐴}}})
76dmeqd 5738 . . . 4 (𝑥 = 𝐴 → dom {⟨𝑥, 𝑥⟩} = dom {{{𝐴}}})
87, 3eqeq12d 2814 . . 3 (𝑥 = 𝐴 → (dom {⟨𝑥, 𝑥⟩} = {𝑥} ↔ dom {{{𝐴}}} = {𝐴}))
91dmsnop 6040 . . 3 dom {⟨𝑥, 𝑥⟩} = {𝑥}
108, 9vtoclg 3515 . 2 (𝐴 ∈ V → dom {{{𝐴}}} = {𝐴})
11 0ex 5175 . . . . 5 ∅ ∈ V
1211snid 4561 . . . 4 ∅ ∈ {∅}
13 dmsn0el 6035 . . . 4 (∅ ∈ {∅} → dom {{∅}} = ∅)
1412, 13ax-mp 5 . . 3 dom {{∅}} = ∅
15 snprc 4613 . . . . . . 7 𝐴 ∈ V ↔ {𝐴} = ∅)
1615biimpi 219 . . . . . 6 𝐴 ∈ V → {𝐴} = ∅)
1716sneqd 4537 . . . . 5 𝐴 ∈ V → {{𝐴}} = {∅})
1817sneqd 4537 . . . 4 𝐴 ∈ V → {{{𝐴}}} = {{∅}})
1918dmeqd 5738 . . 3 𝐴 ∈ V → dom {{{𝐴}}} = dom {{∅}})
2014, 19, 163eqtr4a 2859 . 2 𝐴 ∈ V → dom {{{𝐴}}} = {𝐴})
2110, 20pm2.61i 185 1 dom {{{𝐴}}} = {𝐴}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1538  wcel 2111  Vcvv 3441  c0 4243  {csn 4525  cop 4531  dom cdm 5519
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-v 3443  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-br 5031  df-opab 5093  df-xp 5525  df-dm 5529
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator