Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dmsnsnsn | Structured version Visualization version GIF version |
Description: The domain of the singleton of the singleton of a singleton. (Contributed by NM, 15-Sep-2004.) (Revised by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
dmsnsnsn | ⊢ dom {{{𝐴}}} = {𝐴} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3436 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
2 | 1 | opid 4824 | . . . . . . 7 ⊢ 〈𝑥, 𝑥〉 = {{𝑥}} |
3 | sneq 4571 | . . . . . . . 8 ⊢ (𝑥 = 𝐴 → {𝑥} = {𝐴}) | |
4 | 3 | sneqd 4573 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → {{𝑥}} = {{𝐴}}) |
5 | 2, 4 | eqtrid 2790 | . . . . . 6 ⊢ (𝑥 = 𝐴 → 〈𝑥, 𝑥〉 = {{𝐴}}) |
6 | 5 | sneqd 4573 | . . . . 5 ⊢ (𝑥 = 𝐴 → {〈𝑥, 𝑥〉} = {{{𝐴}}}) |
7 | 6 | dmeqd 5814 | . . . 4 ⊢ (𝑥 = 𝐴 → dom {〈𝑥, 𝑥〉} = dom {{{𝐴}}}) |
8 | 7, 3 | eqeq12d 2754 | . . 3 ⊢ (𝑥 = 𝐴 → (dom {〈𝑥, 𝑥〉} = {𝑥} ↔ dom {{{𝐴}}} = {𝐴})) |
9 | 1 | dmsnop 6119 | . . 3 ⊢ dom {〈𝑥, 𝑥〉} = {𝑥} |
10 | 8, 9 | vtoclg 3505 | . 2 ⊢ (𝐴 ∈ V → dom {{{𝐴}}} = {𝐴}) |
11 | 0ex 5231 | . . . . 5 ⊢ ∅ ∈ V | |
12 | 11 | snid 4597 | . . . 4 ⊢ ∅ ∈ {∅} |
13 | dmsn0el 6114 | . . . 4 ⊢ (∅ ∈ {∅} → dom {{∅}} = ∅) | |
14 | 12, 13 | ax-mp 5 | . . 3 ⊢ dom {{∅}} = ∅ |
15 | snprc 4653 | . . . . . . 7 ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) | |
16 | 15 | biimpi 215 | . . . . . 6 ⊢ (¬ 𝐴 ∈ V → {𝐴} = ∅) |
17 | 16 | sneqd 4573 | . . . . 5 ⊢ (¬ 𝐴 ∈ V → {{𝐴}} = {∅}) |
18 | 17 | sneqd 4573 | . . . 4 ⊢ (¬ 𝐴 ∈ V → {{{𝐴}}} = {{∅}}) |
19 | 18 | dmeqd 5814 | . . 3 ⊢ (¬ 𝐴 ∈ V → dom {{{𝐴}}} = dom {{∅}}) |
20 | 14, 19, 16 | 3eqtr4a 2804 | . 2 ⊢ (¬ 𝐴 ∈ V → dom {{{𝐴}}} = {𝐴}) |
21 | 10, 20 | pm2.61i 182 | 1 ⊢ dom {{{𝐴}}} = {𝐴} |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1539 ∈ wcel 2106 Vcvv 3432 ∅c0 4256 {csn 4561 〈cop 4567 dom cdm 5589 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-xp 5595 df-dm 5599 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |