MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmsnsnsn Structured version   Visualization version   GIF version

Theorem dmsnsnsn 5867
Description: The domain of the singleton of the singleton of a singleton. (Contributed by NM, 15-Sep-2004.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
dmsnsnsn dom {{{𝐴}}} = {𝐴}

Proof of Theorem dmsnsnsn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 vex 3400 . . . . . . . 8 𝑥 ∈ V
21opid 4656 . . . . . . 7 𝑥, 𝑥⟩ = {{𝑥}}
3 sneq 4407 . . . . . . . 8 (𝑥 = 𝐴 → {𝑥} = {𝐴})
43sneqd 4409 . . . . . . 7 (𝑥 = 𝐴 → {{𝑥}} = {{𝐴}})
52, 4syl5eq 2825 . . . . . 6 (𝑥 = 𝐴 → ⟨𝑥, 𝑥⟩ = {{𝐴}})
65sneqd 4409 . . . . 5 (𝑥 = 𝐴 → {⟨𝑥, 𝑥⟩} = {{{𝐴}}})
76dmeqd 5571 . . . 4 (𝑥 = 𝐴 → dom {⟨𝑥, 𝑥⟩} = dom {{{𝐴}}})
87, 3eqeq12d 2792 . . 3 (𝑥 = 𝐴 → (dom {⟨𝑥, 𝑥⟩} = {𝑥} ↔ dom {{{𝐴}}} = {𝐴}))
91dmsnop 5863 . . 3 dom {⟨𝑥, 𝑥⟩} = {𝑥}
108, 9vtoclg 3466 . 2 (𝐴 ∈ V → dom {{{𝐴}}} = {𝐴})
11 0ex 5026 . . . . 5 ∅ ∈ V
1211snid 4429 . . . 4 ∅ ∈ {∅}
13 dmsn0el 5858 . . . 4 (∅ ∈ {∅} → dom {{∅}} = ∅)
1412, 13ax-mp 5 . . 3 dom {{∅}} = ∅
15 snprc 4483 . . . . . . 7 𝐴 ∈ V ↔ {𝐴} = ∅)
1615biimpi 208 . . . . . 6 𝐴 ∈ V → {𝐴} = ∅)
1716sneqd 4409 . . . . 5 𝐴 ∈ V → {{𝐴}} = {∅})
1817sneqd 4409 . . . 4 𝐴 ∈ V → {{{𝐴}}} = {{∅}})
1918dmeqd 5571 . . 3 𝐴 ∈ V → dom {{{𝐴}}} = dom {{∅}})
2014, 19, 163eqtr4a 2839 . 2 𝐴 ∈ V → dom {{{𝐴}}} = {𝐴})
2110, 20pm2.61i 177 1 dom {{{𝐴}}} = {𝐴}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1601  wcel 2106  Vcvv 3397  c0 4140  {csn 4397  cop 4403  dom cdm 5355
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-13 2333  ax-ext 2753  ax-sep 5017  ax-nul 5025  ax-pr 5138
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-ne 2969  df-rab 3098  df-v 3399  df-dif 3794  df-un 3796  df-in 3798  df-ss 3805  df-nul 4141  df-if 4307  df-sn 4398  df-pr 4400  df-op 4404  df-br 4887  df-opab 4949  df-xp 5361  df-dm 5365
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator