| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opidg | Structured version Visualization version GIF version | ||
| Description: The ordered pair 〈𝐴, 𝐴〉 in Kuratowski's representation. Closed form of opid 4875. (Contributed by Peter Mazsa, 22-Jul-2019.) (Avoid depending on this detail.) |
| Ref | Expression |
|---|---|
| opidg | ⊢ (𝐴 ∈ 𝑉 → 〈𝐴, 𝐴〉 = {{𝐴}}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfopg 4853 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) → 〈𝐴, 𝐴〉 = {{𝐴}, {𝐴, 𝐴}}) | |
| 2 | 1 | anidms 566 | . 2 ⊢ (𝐴 ∈ 𝑉 → 〈𝐴, 𝐴〉 = {{𝐴}, {𝐴, 𝐴}}) |
| 3 | dfsn2 4621 | . . . . 5 ⊢ {𝐴} = {𝐴, 𝐴} | |
| 4 | 3 | eqcomi 2743 | . . . 4 ⊢ {𝐴, 𝐴} = {𝐴} |
| 5 | 4 | preq2i 4719 | . . 3 ⊢ {{𝐴}, {𝐴, 𝐴}} = {{𝐴}, {𝐴}} |
| 6 | dfsn2 4621 | . . 3 ⊢ {{𝐴}} = {{𝐴}, {𝐴}} | |
| 7 | 5, 6 | eqtr4i 2760 | . 2 ⊢ {{𝐴}, {𝐴, 𝐴}} = {{𝐴}} |
| 8 | 2, 7 | eqtrdi 2785 | 1 ⊢ (𝐴 ∈ 𝑉 → 〈𝐴, 𝐴〉 = {{𝐴}}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 {csn 4608 {cpr 4610 〈cop 4614 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-v 3466 df-dif 3936 df-un 3938 df-ss 3950 df-nul 4316 df-if 4508 df-sn 4609 df-pr 4611 df-op 4615 |
| This theorem is referenced by: opid 4875 brin3 38352 |
| Copyright terms: Public domain | W3C validator |