| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opidg | Structured version Visualization version GIF version | ||
| Description: The ordered pair 〈𝐴, 𝐴〉 in Kuratowski's representation. Closed form of opid 4840. (Contributed by Peter Mazsa, 22-Jul-2019.) (Avoid depending on this detail.) |
| Ref | Expression |
|---|---|
| opidg | ⊢ (𝐴 ∈ 𝑉 → 〈𝐴, 𝐴〉 = {{𝐴}}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfopg 4818 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) → 〈𝐴, 𝐴〉 = {{𝐴}, {𝐴, 𝐴}}) | |
| 2 | 1 | anidms 566 | . 2 ⊢ (𝐴 ∈ 𝑉 → 〈𝐴, 𝐴〉 = {{𝐴}, {𝐴, 𝐴}}) |
| 3 | dfsn2 4584 | . . . . 5 ⊢ {𝐴} = {𝐴, 𝐴} | |
| 4 | 3 | eqcomi 2740 | . . . 4 ⊢ {𝐴, 𝐴} = {𝐴} |
| 5 | 4 | preq2i 4685 | . . 3 ⊢ {{𝐴}, {𝐴, 𝐴}} = {{𝐴}, {𝐴}} |
| 6 | dfsn2 4584 | . . 3 ⊢ {{𝐴}} = {{𝐴}, {𝐴}} | |
| 7 | 5, 6 | eqtr4i 2757 | . 2 ⊢ {{𝐴}, {𝐴, 𝐴}} = {{𝐴}} |
| 8 | 2, 7 | eqtrdi 2782 | 1 ⊢ (𝐴 ∈ 𝑉 → 〈𝐴, 𝐴〉 = {{𝐴}}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 {csn 4571 {cpr 4573 〈cop 4577 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 |
| This theorem is referenced by: opid 4840 brin3 38447 |
| Copyright terms: Public domain | W3C validator |