MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opidg Structured version   Visualization version   GIF version

Theorem opidg 4893
Description: The ordered pair 𝐴, 𝐴 in Kuratowski's representation. Closed form of opid 4894. (Contributed by Peter Mazsa, 22-Jul-2019.) (Avoid depending on this detail.)
Assertion
Ref Expression
opidg (𝐴𝑉 → ⟨𝐴, 𝐴⟩ = {{𝐴}})

Proof of Theorem opidg
StepHypRef Expression
1 dfopg 4872 . . 3 ((𝐴𝑉𝐴𝑉) → ⟨𝐴, 𝐴⟩ = {{𝐴}, {𝐴, 𝐴}})
21anidms 568 . 2 (𝐴𝑉 → ⟨𝐴, 𝐴⟩ = {{𝐴}, {𝐴, 𝐴}})
3 dfsn2 4642 . . . . 5 {𝐴} = {𝐴, 𝐴}
43eqcomi 2742 . . . 4 {𝐴, 𝐴} = {𝐴}
54preq2i 4742 . . 3 {{𝐴}, {𝐴, 𝐴}} = {{𝐴}, {𝐴}}
6 dfsn2 4642 . . 3 {{𝐴}} = {{𝐴}, {𝐴}}
75, 6eqtr4i 2764 . 2 {{𝐴}, {𝐴, 𝐴}} = {{𝐴}}
82, 7eqtrdi 2789 1 (𝐴𝑉 → ⟨𝐴, 𝐴⟩ = {{𝐴}})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2107  {csn 4629  {cpr 4631  cop 4635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636
This theorem is referenced by:  opid  4894  brin3  37280
  Copyright terms: Public domain W3C validator