![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opidg | Structured version Visualization version GIF version |
Description: The ordered pair ⟨𝐴, 𝐴⟩ in Kuratowski's representation. Closed form of opid 4894. (Contributed by Peter Mazsa, 22-Jul-2019.) (Avoid depending on this detail.) |
Ref | Expression |
---|---|
opidg | ⊢ (𝐴 ∈ 𝑉 → ⟨𝐴, 𝐴⟩ = {{𝐴}}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfopg 4872 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) → ⟨𝐴, 𝐴⟩ = {{𝐴}, {𝐴, 𝐴}}) | |
2 | 1 | anidms 568 | . 2 ⊢ (𝐴 ∈ 𝑉 → ⟨𝐴, 𝐴⟩ = {{𝐴}, {𝐴, 𝐴}}) |
3 | dfsn2 4642 | . . . . 5 ⊢ {𝐴} = {𝐴, 𝐴} | |
4 | 3 | eqcomi 2742 | . . . 4 ⊢ {𝐴, 𝐴} = {𝐴} |
5 | 4 | preq2i 4742 | . . 3 ⊢ {{𝐴}, {𝐴, 𝐴}} = {{𝐴}, {𝐴}} |
6 | dfsn2 4642 | . . 3 ⊢ {{𝐴}} = {{𝐴}, {𝐴}} | |
7 | 5, 6 | eqtr4i 2764 | . 2 ⊢ {{𝐴}, {𝐴, 𝐴}} = {{𝐴}} |
8 | 2, 7 | eqtrdi 2789 | 1 ⊢ (𝐴 ∈ 𝑉 → ⟨𝐴, 𝐴⟩ = {{𝐴}}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2107 {csn 4629 {cpr 4631 ⟨cop 4635 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 |
This theorem is referenced by: opid 4894 brin3 37280 |
Copyright terms: Public domain | W3C validator |