MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opidg Structured version   Visualization version   GIF version

Theorem opidg 4858
Description: The ordered pair 𝐴, 𝐴 in Kuratowski's representation. Closed form of opid 4859. (Contributed by Peter Mazsa, 22-Jul-2019.) (Avoid depending on this detail.)
Assertion
Ref Expression
opidg (𝐴𝑉 → ⟨𝐴, 𝐴⟩ = {{𝐴}})

Proof of Theorem opidg
StepHypRef Expression
1 dfopg 4837 . . 3 ((𝐴𝑉𝐴𝑉) → ⟨𝐴, 𝐴⟩ = {{𝐴}, {𝐴, 𝐴}})
21anidms 566 . 2 (𝐴𝑉 → ⟨𝐴, 𝐴⟩ = {{𝐴}, {𝐴, 𝐴}})
3 dfsn2 4604 . . . . 5 {𝐴} = {𝐴, 𝐴}
43eqcomi 2739 . . . 4 {𝐴, 𝐴} = {𝐴}
54preq2i 4703 . . 3 {{𝐴}, {𝐴, 𝐴}} = {{𝐴}, {𝐴}}
6 dfsn2 4604 . . 3 {{𝐴}} = {{𝐴}, {𝐴}}
75, 6eqtr4i 2756 . 2 {{𝐴}, {𝐴, 𝐴}} = {{𝐴}}
82, 7eqtrdi 2781 1 (𝐴𝑉 → ⟨𝐴, 𝐴⟩ = {{𝐴}})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  {csn 4591  {cpr 4593  cop 4597
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-v 3452  df-dif 3919  df-un 3921  df-ss 3933  df-nul 4299  df-if 4491  df-sn 4592  df-pr 4594  df-op 4598
This theorem is referenced by:  opid  4859  brin3  38396
  Copyright terms: Public domain W3C validator