MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opidg Structured version   Visualization version   GIF version

Theorem opidg 4823
Description: The ordered pair 𝐴, 𝐴 in Kuratowski's representation. Closed form of opid 4824. (Contributed by Peter Mazsa, 22-Jul-2019.) (Avoid depending on this detail.)
Assertion
Ref Expression
opidg (𝐴𝑉 → ⟨𝐴, 𝐴⟩ = {{𝐴}})

Proof of Theorem opidg
StepHypRef Expression
1 dfopg 4802 . . 3 ((𝐴𝑉𝐴𝑉) → ⟨𝐴, 𝐴⟩ = {{𝐴}, {𝐴, 𝐴}})
21anidms 567 . 2 (𝐴𝑉 → ⟨𝐴, 𝐴⟩ = {{𝐴}, {𝐴, 𝐴}})
3 dfsn2 4574 . . . . 5 {𝐴} = {𝐴, 𝐴}
43eqcomi 2747 . . . 4 {𝐴, 𝐴} = {𝐴}
54preq2i 4673 . . 3 {{𝐴}, {𝐴, 𝐴}} = {{𝐴}, {𝐴}}
6 dfsn2 4574 . . 3 {{𝐴}} = {{𝐴}, {𝐴}}
75, 6eqtr4i 2769 . 2 {{𝐴}, {𝐴, 𝐴}} = {{𝐴}}
82, 7eqtrdi 2794 1 (𝐴𝑉 → ⟨𝐴, 𝐴⟩ = {{𝐴}})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  {csn 4561  {cpr 4563  cop 4567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-v 3434  df-dif 3890  df-un 3892  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568
This theorem is referenced by:  opid  4824  brin3  36536
  Copyright terms: Public domain W3C validator