![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opidg | Structured version Visualization version GIF version |
Description: The ordered pair 〈𝐴, 𝐴〉 in Kuratowski's representation. Closed form of opid 4898. (Contributed by Peter Mazsa, 22-Jul-2019.) (Avoid depending on this detail.) |
Ref | Expression |
---|---|
opidg | ⊢ (𝐴 ∈ 𝑉 → 〈𝐴, 𝐴〉 = {{𝐴}}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfopg 4876 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) → 〈𝐴, 𝐴〉 = {{𝐴}, {𝐴, 𝐴}}) | |
2 | 1 | anidms 566 | . 2 ⊢ (𝐴 ∈ 𝑉 → 〈𝐴, 𝐴〉 = {{𝐴}, {𝐴, 𝐴}}) |
3 | dfsn2 4644 | . . . . 5 ⊢ {𝐴} = {𝐴, 𝐴} | |
4 | 3 | eqcomi 2744 | . . . 4 ⊢ {𝐴, 𝐴} = {𝐴} |
5 | 4 | preq2i 4742 | . . 3 ⊢ {{𝐴}, {𝐴, 𝐴}} = {{𝐴}, {𝐴}} |
6 | dfsn2 4644 | . . 3 ⊢ {{𝐴}} = {{𝐴}, {𝐴}} | |
7 | 5, 6 | eqtr4i 2766 | . 2 ⊢ {{𝐴}, {𝐴, 𝐴}} = {{𝐴}} |
8 | 2, 7 | eqtrdi 2791 | 1 ⊢ (𝐴 ∈ 𝑉 → 〈𝐴, 𝐴〉 = {{𝐴}}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2106 {csn 4631 {cpr 4633 〈cop 4637 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 |
This theorem is referenced by: opid 4898 brin3 38392 |
Copyright terms: Public domain | W3C validator |