MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opidg Structured version   Visualization version   GIF version

Theorem opidg 4839
Description: The ordered pair 𝐴, 𝐴 in Kuratowski's representation. Closed form of opid 4840. (Contributed by Peter Mazsa, 22-Jul-2019.) (Avoid depending on this detail.)
Assertion
Ref Expression
opidg (𝐴𝑉 → ⟨𝐴, 𝐴⟩ = {{𝐴}})

Proof of Theorem opidg
StepHypRef Expression
1 dfopg 4818 . . 3 ((𝐴𝑉𝐴𝑉) → ⟨𝐴, 𝐴⟩ = {{𝐴}, {𝐴, 𝐴}})
21anidms 566 . 2 (𝐴𝑉 → ⟨𝐴, 𝐴⟩ = {{𝐴}, {𝐴, 𝐴}})
3 dfsn2 4584 . . . . 5 {𝐴} = {𝐴, 𝐴}
43eqcomi 2740 . . . 4 {𝐴, 𝐴} = {𝐴}
54preq2i 4685 . . 3 {{𝐴}, {𝐴, 𝐴}} = {{𝐴}, {𝐴}}
6 dfsn2 4584 . . 3 {{𝐴}} = {{𝐴}, {𝐴}}
75, 6eqtr4i 2757 . 2 {{𝐴}, {𝐴, 𝐴}} = {{𝐴}}
82, 7eqtrdi 2782 1 (𝐴𝑉 → ⟨𝐴, 𝐴⟩ = {{𝐴}})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  {csn 4571  {cpr 4573  cop 4577
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578
This theorem is referenced by:  opid  4840  brin3  38447
  Copyright terms: Public domain W3C validator