Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > opidg | Structured version Visualization version GIF version |
Description: The ordered pair 〈𝐴, 𝐴〉 in Kuratowski's representation. Closed form of opid 4821. (Contributed by Peter Mazsa, 22-Jul-2019.) (Avoid depending on this detail.) |
Ref | Expression |
---|---|
opidg | ⊢ (𝐴 ∈ 𝑉 → 〈𝐴, 𝐴〉 = {{𝐴}}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfopg 4799 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) → 〈𝐴, 𝐴〉 = {{𝐴}, {𝐴, 𝐴}}) | |
2 | 1 | anidms 566 | . 2 ⊢ (𝐴 ∈ 𝑉 → 〈𝐴, 𝐴〉 = {{𝐴}, {𝐴, 𝐴}}) |
3 | dfsn2 4571 | . . . . 5 ⊢ {𝐴} = {𝐴, 𝐴} | |
4 | 3 | eqcomi 2747 | . . . 4 ⊢ {𝐴, 𝐴} = {𝐴} |
5 | 4 | preq2i 4670 | . . 3 ⊢ {{𝐴}, {𝐴, 𝐴}} = {{𝐴}, {𝐴}} |
6 | dfsn2 4571 | . . 3 ⊢ {{𝐴}} = {{𝐴}, {𝐴}} | |
7 | 5, 6 | eqtr4i 2769 | . 2 ⊢ {{𝐴}, {𝐴, 𝐴}} = {{𝐴}} |
8 | 2, 7 | eqtrdi 2795 | 1 ⊢ (𝐴 ∈ 𝑉 → 〈𝐴, 𝐴〉 = {{𝐴}}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 {csn 4558 {cpr 4560 〈cop 4564 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-dif 3886 df-un 3888 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 |
This theorem is referenced by: opid 4821 brin3 36463 |
Copyright terms: Public domain | W3C validator |