| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iedgval3sn | Structured version Visualization version GIF version | ||
| Description: Degenerated case 3 for edges: The set of indexed edges of a singleton containing a singleton containing a singleton is the innermost singleton. (Contributed by AV, 24-Sep-2020.) (Avoid depending on this detail.) |
| Ref | Expression |
|---|---|
| vtxval3sn.a | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| iedgval3sn | ⊢ (iEdg‘{{{𝐴}}}) = {𝐴} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vtxval3sn.a | . 2 ⊢ 𝐴 ∈ V | |
| 2 | 1 | opid 4860 | . . . 4 ⊢ 〈𝐴, 𝐴〉 = {{𝐴}} |
| 3 | 2 | eqcomi 2739 | . . 3 ⊢ {{𝐴}} = 〈𝐴, 𝐴〉 |
| 4 | 3 | sneqi 4603 | . 2 ⊢ {{{𝐴}}} = {〈𝐴, 𝐴〉} |
| 5 | 1, 4 | iedgvalsnop 28976 | 1 ⊢ (iEdg‘{{{𝐴}}}) = {𝐴} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 Vcvv 3450 {csn 4592 〈cop 4598 ‘cfv 6514 iEdgciedg 28931 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-iota 6467 df-fun 6516 df-fv 6522 df-2nd 7972 df-iedg 28933 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |