MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iedgval3sn Structured version   Visualization version   GIF version

Theorem iedgval3sn 28304
Description: Degenerated case 3 for edges: The set of indexed edges of a singleton containing a singleton containing a singleton is the innermost singleton. (Contributed by AV, 24-Sep-2020.) (Avoid depending on this detail.)
Hypothesis
Ref Expression
vtxval3sn.a 𝐴 ∈ V
Assertion
Ref Expression
iedgval3sn (iEdg‘{{{𝐴}}}) = {𝐴}

Proof of Theorem iedgval3sn
StepHypRef Expression
1 vtxval3sn.a . 2 𝐴 ∈ V
21opid 4894 . . . 4 𝐴, 𝐴⟩ = {{𝐴}}
32eqcomi 2742 . . 3 {{𝐴}} = ⟨𝐴, 𝐴
43sneqi 4640 . 2 {{{𝐴}}} = {⟨𝐴, 𝐴⟩}
51, 4iedgvalsnop 28302 1 (iEdg‘{{{𝐴}}}) = {𝐴}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1542  wcel 2107  Vcvv 3475  {csn 4629  cop 4635  cfv 6544  iEdgciedg 28257
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-iota 6496  df-fun 6546  df-fv 6552  df-2nd 7976  df-iedg 28259
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator