![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iedgval3sn | Structured version Visualization version GIF version |
Description: Degenerated case 3 for edges: The set of indexed edges of a singleton containing a singleton containing a singleton is the innermost singleton. (Contributed by AV, 24-Sep-2020.) (Avoid depending on this detail.) |
Ref | Expression |
---|---|
vtxval3sn.a | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
iedgval3sn | ⊢ (iEdg‘{{{𝐴}}}) = {𝐴} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vtxval3sn.a | . 2 ⊢ 𝐴 ∈ V | |
2 | 1 | opid 4901 | . . . 4 ⊢ 〈𝐴, 𝐴〉 = {{𝐴}} |
3 | 2 | eqcomi 2746 | . . 3 ⊢ {{𝐴}} = 〈𝐴, 𝐴〉 |
4 | 3 | sneqi 4645 | . 2 ⊢ {{{𝐴}}} = {〈𝐴, 𝐴〉} |
5 | 1, 4 | iedgvalsnop 29085 | 1 ⊢ (iEdg‘{{{𝐴}}}) = {𝐴} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2108 Vcvv 3481 {csn 4634 〈cop 4640 ‘cfv 6569 iEdgciedg 29040 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pr 5441 ax-un 7761 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3483 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-br 5152 df-opab 5214 df-mpt 5235 df-id 5587 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-iota 6522 df-fun 6571 df-fv 6577 df-2nd 8023 df-iedg 29042 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |