| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > odumeet | Structured version Visualization version GIF version | ||
| Description: Meets in a dual order are joins in the original. (Contributed by Stefan O'Rear, 29-Jan-2015.) |
| Ref | Expression |
|---|---|
| oduglb.d | ⊢ 𝐷 = (ODual‘𝑂) |
| odumeet.j | ⊢ ∨ = (join‘𝑂) |
| Ref | Expression |
|---|---|
| odumeet | ⊢ ∨ = (meet‘𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | odumeet.j | . 2 ⊢ ∨ = (join‘𝑂) | |
| 2 | oduglb.d | . . . . . . 7 ⊢ 𝐷 = (ODual‘𝑂) | |
| 3 | eqid 2731 | . . . . . . 7 ⊢ (lub‘𝑂) = (lub‘𝑂) | |
| 4 | 2, 3 | oduglb 18308 | . . . . . 6 ⊢ (𝑂 ∈ V → (lub‘𝑂) = (glb‘𝐷)) |
| 5 | 4 | breqd 5097 | . . . . 5 ⊢ (𝑂 ∈ V → ({𝑎, 𝑏} (lub‘𝑂)𝑐 ↔ {𝑎, 𝑏} (glb‘𝐷)𝑐)) |
| 6 | 5 | oprabbidv 7407 | . . . 4 ⊢ (𝑂 ∈ V → {〈〈𝑎, 𝑏〉, 𝑐〉 ∣ {𝑎, 𝑏} (lub‘𝑂)𝑐} = {〈〈𝑎, 𝑏〉, 𝑐〉 ∣ {𝑎, 𝑏} (glb‘𝐷)𝑐}) |
| 7 | eqid 2731 | . . . . 5 ⊢ (join‘𝑂) = (join‘𝑂) | |
| 8 | 3, 7 | joinfval 18272 | . . . 4 ⊢ (𝑂 ∈ V → (join‘𝑂) = {〈〈𝑎, 𝑏〉, 𝑐〉 ∣ {𝑎, 𝑏} (lub‘𝑂)𝑐}) |
| 9 | 2 | fvexi 6831 | . . . . 5 ⊢ 𝐷 ∈ V |
| 10 | eqid 2731 | . . . . . 6 ⊢ (glb‘𝐷) = (glb‘𝐷) | |
| 11 | eqid 2731 | . . . . . 6 ⊢ (meet‘𝐷) = (meet‘𝐷) | |
| 12 | 10, 11 | meetfval 18286 | . . . . 5 ⊢ (𝐷 ∈ V → (meet‘𝐷) = {〈〈𝑎, 𝑏〉, 𝑐〉 ∣ {𝑎, 𝑏} (glb‘𝐷)𝑐}) |
| 13 | 9, 12 | mp1i 13 | . . . 4 ⊢ (𝑂 ∈ V → (meet‘𝐷) = {〈〈𝑎, 𝑏〉, 𝑐〉 ∣ {𝑎, 𝑏} (glb‘𝐷)𝑐}) |
| 14 | 6, 8, 13 | 3eqtr4d 2776 | . . 3 ⊢ (𝑂 ∈ V → (join‘𝑂) = (meet‘𝐷)) |
| 15 | fvprc 6809 | . . . 4 ⊢ (¬ 𝑂 ∈ V → (join‘𝑂) = ∅) | |
| 16 | fvprc 6809 | . . . . . . 7 ⊢ (¬ 𝑂 ∈ V → (ODual‘𝑂) = ∅) | |
| 17 | 2, 16 | eqtrid 2778 | . . . . . 6 ⊢ (¬ 𝑂 ∈ V → 𝐷 = ∅) |
| 18 | 17 | fveq2d 6821 | . . . . 5 ⊢ (¬ 𝑂 ∈ V → (meet‘𝐷) = (meet‘∅)) |
| 19 | meet0 18305 | . . . . 5 ⊢ (meet‘∅) = ∅ | |
| 20 | 18, 19 | eqtrdi 2782 | . . . 4 ⊢ (¬ 𝑂 ∈ V → (meet‘𝐷) = ∅) |
| 21 | 15, 20 | eqtr4d 2769 | . . 3 ⊢ (¬ 𝑂 ∈ V → (join‘𝑂) = (meet‘𝐷)) |
| 22 | 14, 21 | pm2.61i 182 | . 2 ⊢ (join‘𝑂) = (meet‘𝐷) |
| 23 | 1, 22 | eqtri 2754 | 1 ⊢ ∨ = (meet‘𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∅c0 4278 {cpr 4573 class class class wbr 5086 ‘cfv 6476 {coprab 7342 ODualcodu 18187 lubclub 18210 glbcglb 18211 joincjn 18212 meetcmee 18213 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-2 12183 df-3 12184 df-4 12185 df-5 12186 df-6 12187 df-7 12188 df-8 12189 df-9 12190 df-dec 12584 df-sets 17070 df-slot 17088 df-ndx 17100 df-base 17116 df-ple 17176 df-odu 18188 df-lub 18245 df-glb 18246 df-join 18247 df-meet 18248 |
| This theorem is referenced by: odulatb 18335 latdisd 18398 odudlatb 18426 dlatjmdi 18427 |
| Copyright terms: Public domain | W3C validator |