![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > odumeet | Structured version Visualization version GIF version |
Description: Meets in a dual order are joins in the original. (Contributed by Stefan O'Rear, 29-Jan-2015.) |
Ref | Expression |
---|---|
oduglb.d | β’ π· = (ODualβπ) |
odumeet.j | β’ β¨ = (joinβπ) |
Ref | Expression |
---|---|
odumeet | β’ β¨ = (meetβπ·) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | odumeet.j | . 2 β’ β¨ = (joinβπ) | |
2 | oduglb.d | . . . . . . 7 β’ π· = (ODualβπ) | |
3 | eqid 2733 | . . . . . . 7 β’ (lubβπ) = (lubβπ) | |
4 | 2, 3 | oduglb 18362 | . . . . . 6 β’ (π β V β (lubβπ) = (glbβπ·)) |
5 | 4 | breqd 5160 | . . . . 5 β’ (π β V β ({π, π} (lubβπ)π β {π, π} (glbβπ·)π)) |
6 | 5 | oprabbidv 7475 | . . . 4 β’ (π β V β {β¨β¨π, πβ©, πβ© β£ {π, π} (lubβπ)π} = {β¨β¨π, πβ©, πβ© β£ {π, π} (glbβπ·)π}) |
7 | eqid 2733 | . . . . 5 β’ (joinβπ) = (joinβπ) | |
8 | 3, 7 | joinfval 18326 | . . . 4 β’ (π β V β (joinβπ) = {β¨β¨π, πβ©, πβ© β£ {π, π} (lubβπ)π}) |
9 | 2 | fvexi 6906 | . . . . 5 β’ π· β V |
10 | eqid 2733 | . . . . . 6 β’ (glbβπ·) = (glbβπ·) | |
11 | eqid 2733 | . . . . . 6 β’ (meetβπ·) = (meetβπ·) | |
12 | 10, 11 | meetfval 18340 | . . . . 5 β’ (π· β V β (meetβπ·) = {β¨β¨π, πβ©, πβ© β£ {π, π} (glbβπ·)π}) |
13 | 9, 12 | mp1i 13 | . . . 4 β’ (π β V β (meetβπ·) = {β¨β¨π, πβ©, πβ© β£ {π, π} (glbβπ·)π}) |
14 | 6, 8, 13 | 3eqtr4d 2783 | . . 3 β’ (π β V β (joinβπ) = (meetβπ·)) |
15 | fvprc 6884 | . . . 4 β’ (Β¬ π β V β (joinβπ) = β ) | |
16 | fvprc 6884 | . . . . . . 7 β’ (Β¬ π β V β (ODualβπ) = β ) | |
17 | 2, 16 | eqtrid 2785 | . . . . . 6 β’ (Β¬ π β V β π· = β ) |
18 | 17 | fveq2d 6896 | . . . . 5 β’ (Β¬ π β V β (meetβπ·) = (meetββ )) |
19 | meet0 18359 | . . . . 5 β’ (meetββ ) = β | |
20 | 18, 19 | eqtrdi 2789 | . . . 4 β’ (Β¬ π β V β (meetβπ·) = β ) |
21 | 15, 20 | eqtr4d 2776 | . . 3 β’ (Β¬ π β V β (joinβπ) = (meetβπ·)) |
22 | 14, 21 | pm2.61i 182 | . 2 β’ (joinβπ) = (meetβπ·) |
23 | 1, 22 | eqtri 2761 | 1 β’ β¨ = (meetβπ·) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 = wceq 1542 β wcel 2107 Vcvv 3475 β c0 4323 {cpr 4631 class class class wbr 5149 βcfv 6544 {coprab 7410 ODualcodu 18239 lubclub 18262 glbcglb 18263 joincjn 18264 meetcmee 18265 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-nn 12213 df-2 12275 df-3 12276 df-4 12277 df-5 12278 df-6 12279 df-7 12280 df-8 12281 df-9 12282 df-dec 12678 df-sets 17097 df-slot 17115 df-ndx 17127 df-base 17145 df-ple 17217 df-odu 18240 df-lub 18299 df-glb 18300 df-join 18301 df-meet 18302 |
This theorem is referenced by: odulatb 18387 latdisd 18450 odudlatb 18478 dlatjmdi 18479 |
Copyright terms: Public domain | W3C validator |