MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odumeet Structured version   Visualization version   GIF version

Theorem odumeet 18430
Description: Meets in a dual order are joins in the original. (Contributed by Stefan O'Rear, 29-Jan-2015.)
Hypotheses
Ref Expression
oduglb.d 𝐷 = (ODual‘𝑂)
odumeet.j = (join‘𝑂)
Assertion
Ref Expression
odumeet = (meet‘𝐷)

Proof of Theorem odumeet
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 odumeet.j . 2 = (join‘𝑂)
2 oduglb.d . . . . . . 7 𝐷 = (ODual‘𝑂)
3 eqid 2725 . . . . . . 7 (lub‘𝑂) = (lub‘𝑂)
42, 3oduglb 18429 . . . . . 6 (𝑂 ∈ V → (lub‘𝑂) = (glb‘𝐷))
54breqd 5163 . . . . 5 (𝑂 ∈ V → ({𝑎, 𝑏} (lub‘𝑂)𝑐 ↔ {𝑎, 𝑏} (glb‘𝐷)𝑐))
65oprabbidv 7490 . . . 4 (𝑂 ∈ V → {⟨⟨𝑎, 𝑏⟩, 𝑐⟩ ∣ {𝑎, 𝑏} (lub‘𝑂)𝑐} = {⟨⟨𝑎, 𝑏⟩, 𝑐⟩ ∣ {𝑎, 𝑏} (glb‘𝐷)𝑐})
7 eqid 2725 . . . . 5 (join‘𝑂) = (join‘𝑂)
83, 7joinfval 18393 . . . 4 (𝑂 ∈ V → (join‘𝑂) = {⟨⟨𝑎, 𝑏⟩, 𝑐⟩ ∣ {𝑎, 𝑏} (lub‘𝑂)𝑐})
92fvexi 6914 . . . . 5 𝐷 ∈ V
10 eqid 2725 . . . . . 6 (glb‘𝐷) = (glb‘𝐷)
11 eqid 2725 . . . . . 6 (meet‘𝐷) = (meet‘𝐷)
1210, 11meetfval 18407 . . . . 5 (𝐷 ∈ V → (meet‘𝐷) = {⟨⟨𝑎, 𝑏⟩, 𝑐⟩ ∣ {𝑎, 𝑏} (glb‘𝐷)𝑐})
139, 12mp1i 13 . . . 4 (𝑂 ∈ V → (meet‘𝐷) = {⟨⟨𝑎, 𝑏⟩, 𝑐⟩ ∣ {𝑎, 𝑏} (glb‘𝐷)𝑐})
146, 8, 133eqtr4d 2775 . . 3 (𝑂 ∈ V → (join‘𝑂) = (meet‘𝐷))
15 fvprc 6892 . . . 4 𝑂 ∈ V → (join‘𝑂) = ∅)
16 fvprc 6892 . . . . . . 7 𝑂 ∈ V → (ODual‘𝑂) = ∅)
172, 16eqtrid 2777 . . . . . 6 𝑂 ∈ V → 𝐷 = ∅)
1817fveq2d 6904 . . . . 5 𝑂 ∈ V → (meet‘𝐷) = (meet‘∅))
19 meet0 18426 . . . . 5 (meet‘∅) = ∅
2018, 19eqtrdi 2781 . . . 4 𝑂 ∈ V → (meet‘𝐷) = ∅)
2115, 20eqtr4d 2768 . . 3 𝑂 ∈ V → (join‘𝑂) = (meet‘𝐷))
2214, 21pm2.61i 182 . 2 (join‘𝑂) = (meet‘𝐷)
231, 22eqtri 2753 1 = (meet‘𝐷)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1533  wcel 2098  Vcvv 3461  c0 4324  {cpr 4634   class class class wbr 5152  cfv 6553  {coprab 7424  ODualcodu 18306  lubclub 18329  glbcglb 18330  joincjn 18331  meetcmee 18332
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5368  ax-pr 5432  ax-un 7745  ax-cnex 11210  ax-resscn 11211  ax-1cn 11212  ax-icn 11213  ax-addcl 11214  ax-addrcl 11215  ax-mulcl 11216  ax-mulrcl 11217  ax-mulcom 11218  ax-addass 11219  ax-mulass 11220  ax-distr 11221  ax-i2m1 11222  ax-1ne0 11223  ax-1rid 11224  ax-rnegex 11225  ax-rrecex 11226  ax-cnre 11227  ax-pre-lttri 11228  ax-pre-lttrn 11229  ax-pre-ltadd 11230  ax-pre-mulgt0 11231
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3966  df-nul 4325  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5579  df-eprel 5585  df-po 5593  df-so 5594  df-fr 5636  df-we 5638  df-xp 5687  df-rel 5688  df-cnv 5689  df-co 5690  df-dm 5691  df-rn 5692  df-res 5693  df-ima 5694  df-pred 6311  df-ord 6378  df-on 6379  df-lim 6380  df-suc 6381  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7379  df-ov 7426  df-oprab 7427  df-mpo 7428  df-om 7876  df-2nd 8003  df-frecs 8295  df-wrecs 8326  df-recs 8400  df-rdg 8439  df-er 8733  df-en 8974  df-dom 8975  df-sdom 8976  df-pnf 11296  df-mnf 11297  df-xr 11298  df-ltxr 11299  df-le 11300  df-sub 11492  df-neg 11493  df-nn 12260  df-2 12322  df-3 12323  df-4 12324  df-5 12325  df-6 12326  df-7 12327  df-8 12328  df-9 12329  df-dec 12725  df-sets 17161  df-slot 17179  df-ndx 17191  df-base 17209  df-ple 17281  df-odu 18307  df-lub 18366  df-glb 18367  df-join 18368  df-meet 18369
This theorem is referenced by:  odulatb  18454  latdisd  18517  odudlatb  18545  dlatjmdi  18546
  Copyright terms: Public domain W3C validator