MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odumeet Structured version   Visualization version   GIF version

Theorem odumeet 18376
Description: Meets in a dual order are joins in the original. (Contributed by Stefan O'Rear, 29-Jan-2015.)
Hypotheses
Ref Expression
oduglb.d 𝐷 = (ODual‘𝑂)
odumeet.j = (join‘𝑂)
Assertion
Ref Expression
odumeet = (meet‘𝐷)

Proof of Theorem odumeet
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 odumeet.j . 2 = (join‘𝑂)
2 oduglb.d . . . . . . 7 𝐷 = (ODual‘𝑂)
3 eqid 2730 . . . . . . 7 (lub‘𝑂) = (lub‘𝑂)
42, 3oduglb 18375 . . . . . 6 (𝑂 ∈ V → (lub‘𝑂) = (glb‘𝐷))
54breqd 5121 . . . . 5 (𝑂 ∈ V → ({𝑎, 𝑏} (lub‘𝑂)𝑐 ↔ {𝑎, 𝑏} (glb‘𝐷)𝑐))
65oprabbidv 7458 . . . 4 (𝑂 ∈ V → {⟨⟨𝑎, 𝑏⟩, 𝑐⟩ ∣ {𝑎, 𝑏} (lub‘𝑂)𝑐} = {⟨⟨𝑎, 𝑏⟩, 𝑐⟩ ∣ {𝑎, 𝑏} (glb‘𝐷)𝑐})
7 eqid 2730 . . . . 5 (join‘𝑂) = (join‘𝑂)
83, 7joinfval 18339 . . . 4 (𝑂 ∈ V → (join‘𝑂) = {⟨⟨𝑎, 𝑏⟩, 𝑐⟩ ∣ {𝑎, 𝑏} (lub‘𝑂)𝑐})
92fvexi 6875 . . . . 5 𝐷 ∈ V
10 eqid 2730 . . . . . 6 (glb‘𝐷) = (glb‘𝐷)
11 eqid 2730 . . . . . 6 (meet‘𝐷) = (meet‘𝐷)
1210, 11meetfval 18353 . . . . 5 (𝐷 ∈ V → (meet‘𝐷) = {⟨⟨𝑎, 𝑏⟩, 𝑐⟩ ∣ {𝑎, 𝑏} (glb‘𝐷)𝑐})
139, 12mp1i 13 . . . 4 (𝑂 ∈ V → (meet‘𝐷) = {⟨⟨𝑎, 𝑏⟩, 𝑐⟩ ∣ {𝑎, 𝑏} (glb‘𝐷)𝑐})
146, 8, 133eqtr4d 2775 . . 3 (𝑂 ∈ V → (join‘𝑂) = (meet‘𝐷))
15 fvprc 6853 . . . 4 𝑂 ∈ V → (join‘𝑂) = ∅)
16 fvprc 6853 . . . . . . 7 𝑂 ∈ V → (ODual‘𝑂) = ∅)
172, 16eqtrid 2777 . . . . . 6 𝑂 ∈ V → 𝐷 = ∅)
1817fveq2d 6865 . . . . 5 𝑂 ∈ V → (meet‘𝐷) = (meet‘∅))
19 meet0 18372 . . . . 5 (meet‘∅) = ∅
2018, 19eqtrdi 2781 . . . 4 𝑂 ∈ V → (meet‘𝐷) = ∅)
2115, 20eqtr4d 2768 . . 3 𝑂 ∈ V → (join‘𝑂) = (meet‘𝐷))
2214, 21pm2.61i 182 . 2 (join‘𝑂) = (meet‘𝐷)
231, 22eqtri 2753 1 = (meet‘𝐷)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1540  wcel 2109  Vcvv 3450  c0 4299  {cpr 4594   class class class wbr 5110  cfv 6514  {coprab 7391  ODualcodu 18254  lubclub 18277  glbcglb 18278  joincjn 18279  meetcmee 18280
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-dec 12657  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ple 17247  df-odu 18255  df-lub 18312  df-glb 18313  df-join 18314  df-meet 18315
This theorem is referenced by:  odulatb  18400  latdisd  18463  odudlatb  18491  dlatjmdi  18492
  Copyright terms: Public domain W3C validator