| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > odumeet | Structured version Visualization version GIF version | ||
| Description: Meets in a dual order are joins in the original. (Contributed by Stefan O'Rear, 29-Jan-2015.) |
| Ref | Expression |
|---|---|
| oduglb.d | ⊢ 𝐷 = (ODual‘𝑂) |
| odumeet.j | ⊢ ∨ = (join‘𝑂) |
| Ref | Expression |
|---|---|
| odumeet | ⊢ ∨ = (meet‘𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | odumeet.j | . 2 ⊢ ∨ = (join‘𝑂) | |
| 2 | oduglb.d | . . . . . . 7 ⊢ 𝐷 = (ODual‘𝑂) | |
| 3 | eqid 2733 | . . . . . . 7 ⊢ (lub‘𝑂) = (lub‘𝑂) | |
| 4 | 2, 3 | oduglb 18321 | . . . . . 6 ⊢ (𝑂 ∈ V → (lub‘𝑂) = (glb‘𝐷)) |
| 5 | 4 | breqd 5106 | . . . . 5 ⊢ (𝑂 ∈ V → ({𝑎, 𝑏} (lub‘𝑂)𝑐 ↔ {𝑎, 𝑏} (glb‘𝐷)𝑐)) |
| 6 | 5 | oprabbidv 7421 | . . . 4 ⊢ (𝑂 ∈ V → {〈〈𝑎, 𝑏〉, 𝑐〉 ∣ {𝑎, 𝑏} (lub‘𝑂)𝑐} = {〈〈𝑎, 𝑏〉, 𝑐〉 ∣ {𝑎, 𝑏} (glb‘𝐷)𝑐}) |
| 7 | eqid 2733 | . . . . 5 ⊢ (join‘𝑂) = (join‘𝑂) | |
| 8 | 3, 7 | joinfval 18285 | . . . 4 ⊢ (𝑂 ∈ V → (join‘𝑂) = {〈〈𝑎, 𝑏〉, 𝑐〉 ∣ {𝑎, 𝑏} (lub‘𝑂)𝑐}) |
| 9 | 2 | fvexi 6845 | . . . . 5 ⊢ 𝐷 ∈ V |
| 10 | eqid 2733 | . . . . . 6 ⊢ (glb‘𝐷) = (glb‘𝐷) | |
| 11 | eqid 2733 | . . . . . 6 ⊢ (meet‘𝐷) = (meet‘𝐷) | |
| 12 | 10, 11 | meetfval 18299 | . . . . 5 ⊢ (𝐷 ∈ V → (meet‘𝐷) = {〈〈𝑎, 𝑏〉, 𝑐〉 ∣ {𝑎, 𝑏} (glb‘𝐷)𝑐}) |
| 13 | 9, 12 | mp1i 13 | . . . 4 ⊢ (𝑂 ∈ V → (meet‘𝐷) = {〈〈𝑎, 𝑏〉, 𝑐〉 ∣ {𝑎, 𝑏} (glb‘𝐷)𝑐}) |
| 14 | 6, 8, 13 | 3eqtr4d 2778 | . . 3 ⊢ (𝑂 ∈ V → (join‘𝑂) = (meet‘𝐷)) |
| 15 | fvprc 6823 | . . . 4 ⊢ (¬ 𝑂 ∈ V → (join‘𝑂) = ∅) | |
| 16 | fvprc 6823 | . . . . . . 7 ⊢ (¬ 𝑂 ∈ V → (ODual‘𝑂) = ∅) | |
| 17 | 2, 16 | eqtrid 2780 | . . . . . 6 ⊢ (¬ 𝑂 ∈ V → 𝐷 = ∅) |
| 18 | 17 | fveq2d 6835 | . . . . 5 ⊢ (¬ 𝑂 ∈ V → (meet‘𝐷) = (meet‘∅)) |
| 19 | meet0 18318 | . . . . 5 ⊢ (meet‘∅) = ∅ | |
| 20 | 18, 19 | eqtrdi 2784 | . . . 4 ⊢ (¬ 𝑂 ∈ V → (meet‘𝐷) = ∅) |
| 21 | 15, 20 | eqtr4d 2771 | . . 3 ⊢ (¬ 𝑂 ∈ V → (join‘𝑂) = (meet‘𝐷)) |
| 22 | 14, 21 | pm2.61i 182 | . 2 ⊢ (join‘𝑂) = (meet‘𝐷) |
| 23 | 1, 22 | eqtri 2756 | 1 ⊢ ∨ = (meet‘𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1541 ∈ wcel 2113 Vcvv 3437 ∅c0 4282 {cpr 4579 class class class wbr 5095 ‘cfv 6489 {coprab 7356 ODualcodu 18200 lubclub 18223 glbcglb 18224 joincjn 18225 meetcmee 18226 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-er 8631 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-nn 12137 df-2 12199 df-3 12200 df-4 12201 df-5 12202 df-6 12203 df-7 12204 df-8 12205 df-9 12206 df-dec 12599 df-sets 17082 df-slot 17100 df-ndx 17112 df-base 17128 df-ple 17188 df-odu 18201 df-lub 18258 df-glb 18259 df-join 18260 df-meet 18261 |
| This theorem is referenced by: odulatb 18348 latdisd 18411 odudlatb 18439 dlatjmdi 18440 |
| Copyright terms: Public domain | W3C validator |