Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uncf Structured version   Visualization version   GIF version

Theorem uncf 37593
Description: Functional property of uncurrying. (Contributed by Brendan Leahy, 2-Jun-2021.)
Assertion
Ref Expression
uncf (𝐹:𝐴⟶(𝐶m 𝐵) → uncurry 𝐹:(𝐴 × 𝐵)⟶𝐶)

Proof of Theorem uncf
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ffvelcdm 7053 . . . . . 6 ((𝐹:𝐴⟶(𝐶m 𝐵) ∧ 𝑥𝐴) → (𝐹𝑥) ∈ (𝐶m 𝐵))
2 elmapi 8822 . . . . . 6 ((𝐹𝑥) ∈ (𝐶m 𝐵) → (𝐹𝑥):𝐵𝐶)
31, 2syl 17 . . . . 5 ((𝐹:𝐴⟶(𝐶m 𝐵) ∧ 𝑥𝐴) → (𝐹𝑥):𝐵𝐶)
43ffvelcdmda 7056 . . . 4 (((𝐹:𝐴⟶(𝐶m 𝐵) ∧ 𝑥𝐴) ∧ 𝑦𝐵) → ((𝐹𝑥)‘𝑦) ∈ 𝐶)
54anasss 466 . . 3 ((𝐹:𝐴⟶(𝐶m 𝐵) ∧ (𝑥𝐴𝑦𝐵)) → ((𝐹𝑥)‘𝑦) ∈ 𝐶)
65ralrimivva 3180 . 2 (𝐹:𝐴⟶(𝐶m 𝐵) → ∀𝑥𝐴𝑦𝐵 ((𝐹𝑥)‘𝑦) ∈ 𝐶)
7 df-unc 8247 . . . . 5 uncurry 𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑦(𝐹𝑥)𝑧}
8 df-br 5108 . . . . . . . . . . 11 (𝑦(𝐹𝑥)𝑧 ↔ ⟨𝑦, 𝑧⟩ ∈ (𝐹𝑥))
9 elfvdm 6895 . . . . . . . . . . 11 (⟨𝑦, 𝑧⟩ ∈ (𝐹𝑥) → 𝑥 ∈ dom 𝐹)
108, 9sylbi 217 . . . . . . . . . 10 (𝑦(𝐹𝑥)𝑧𝑥 ∈ dom 𝐹)
11 fdm 6697 . . . . . . . . . . 11 (𝐹:𝐴⟶(𝐶m 𝐵) → dom 𝐹 = 𝐴)
1211eleq2d 2814 . . . . . . . . . 10 (𝐹:𝐴⟶(𝐶m 𝐵) → (𝑥 ∈ dom 𝐹𝑥𝐴))
1310, 12imbitrid 244 . . . . . . . . 9 (𝐹:𝐴⟶(𝐶m 𝐵) → (𝑦(𝐹𝑥)𝑧𝑥𝐴))
1413pm4.71rd 562 . . . . . . . 8 (𝐹:𝐴⟶(𝐶m 𝐵) → (𝑦(𝐹𝑥)𝑧 ↔ (𝑥𝐴𝑦(𝐹𝑥)𝑧)))
15 elmapfun 8839 . . . . . . . . . . 11 ((𝐹𝑥) ∈ (𝐶m 𝐵) → Fun (𝐹𝑥))
16 funbrfv2b 6918 . . . . . . . . . . 11 (Fun (𝐹𝑥) → (𝑦(𝐹𝑥)𝑧 ↔ (𝑦 ∈ dom (𝐹𝑥) ∧ ((𝐹𝑥)‘𝑦) = 𝑧)))
171, 15, 163syl 18 . . . . . . . . . 10 ((𝐹:𝐴⟶(𝐶m 𝐵) ∧ 𝑥𝐴) → (𝑦(𝐹𝑥)𝑧 ↔ (𝑦 ∈ dom (𝐹𝑥) ∧ ((𝐹𝑥)‘𝑦) = 𝑧)))
18 fdm 6697 . . . . . . . . . . . . 13 ((𝐹𝑥):𝐵𝐶 → dom (𝐹𝑥) = 𝐵)
191, 2, 183syl 18 . . . . . . . . . . . 12 ((𝐹:𝐴⟶(𝐶m 𝐵) ∧ 𝑥𝐴) → dom (𝐹𝑥) = 𝐵)
2019eleq2d 2814 . . . . . . . . . . 11 ((𝐹:𝐴⟶(𝐶m 𝐵) ∧ 𝑥𝐴) → (𝑦 ∈ dom (𝐹𝑥) ↔ 𝑦𝐵))
21 eqcom 2736 . . . . . . . . . . . 12 (((𝐹𝑥)‘𝑦) = 𝑧𝑧 = ((𝐹𝑥)‘𝑦))
2221a1i 11 . . . . . . . . . . 11 ((𝐹:𝐴⟶(𝐶m 𝐵) ∧ 𝑥𝐴) → (((𝐹𝑥)‘𝑦) = 𝑧𝑧 = ((𝐹𝑥)‘𝑦)))
2320, 22anbi12d 632 . . . . . . . . . 10 ((𝐹:𝐴⟶(𝐶m 𝐵) ∧ 𝑥𝐴) → ((𝑦 ∈ dom (𝐹𝑥) ∧ ((𝐹𝑥)‘𝑦) = 𝑧) ↔ (𝑦𝐵𝑧 = ((𝐹𝑥)‘𝑦))))
2417, 23bitrd 279 . . . . . . . . 9 ((𝐹:𝐴⟶(𝐶m 𝐵) ∧ 𝑥𝐴) → (𝑦(𝐹𝑥)𝑧 ↔ (𝑦𝐵𝑧 = ((𝐹𝑥)‘𝑦))))
2524pm5.32da 579 . . . . . . . 8 (𝐹:𝐴⟶(𝐶m 𝐵) → ((𝑥𝐴𝑦(𝐹𝑥)𝑧) ↔ (𝑥𝐴 ∧ (𝑦𝐵𝑧 = ((𝐹𝑥)‘𝑦)))))
2614, 25bitrd 279 . . . . . . 7 (𝐹:𝐴⟶(𝐶m 𝐵) → (𝑦(𝐹𝑥)𝑧 ↔ (𝑥𝐴 ∧ (𝑦𝐵𝑧 = ((𝐹𝑥)‘𝑦)))))
27 anass 468 . . . . . . 7 (((𝑥𝐴𝑦𝐵) ∧ 𝑧 = ((𝐹𝑥)‘𝑦)) ↔ (𝑥𝐴 ∧ (𝑦𝐵𝑧 = ((𝐹𝑥)‘𝑦))))
2826, 27bitr4di 289 . . . . . 6 (𝐹:𝐴⟶(𝐶m 𝐵) → (𝑦(𝐹𝑥)𝑧 ↔ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = ((𝐹𝑥)‘𝑦))))
2928oprabbidv 7455 . . . . 5 (𝐹:𝐴⟶(𝐶m 𝐵) → {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑦(𝐹𝑥)𝑧} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = ((𝐹𝑥)‘𝑦))})
307, 29eqtrid 2776 . . . 4 (𝐹:𝐴⟶(𝐶m 𝐵) → uncurry 𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = ((𝐹𝑥)‘𝑦))})
3130feq1d 6670 . . 3 (𝐹:𝐴⟶(𝐶m 𝐵) → (uncurry 𝐹:(𝐴 × 𝐵)⟶𝐶 ↔ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = ((𝐹𝑥)‘𝑦))}:(𝐴 × 𝐵)⟶𝐶))
32 df-mpo 7392 . . . . 5 (𝑥𝐴, 𝑦𝐵 ↦ ((𝐹𝑥)‘𝑦)) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = ((𝐹𝑥)‘𝑦))}
3332eqcomi 2738 . . . 4 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = ((𝐹𝑥)‘𝑦))} = (𝑥𝐴, 𝑦𝐵 ↦ ((𝐹𝑥)‘𝑦))
3433fmpo 8047 . . 3 (∀𝑥𝐴𝑦𝐵 ((𝐹𝑥)‘𝑦) ∈ 𝐶 ↔ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = ((𝐹𝑥)‘𝑦))}:(𝐴 × 𝐵)⟶𝐶)
3531, 34bitr4di 289 . 2 (𝐹:𝐴⟶(𝐶m 𝐵) → (uncurry 𝐹:(𝐴 × 𝐵)⟶𝐶 ↔ ∀𝑥𝐴𝑦𝐵 ((𝐹𝑥)‘𝑦) ∈ 𝐶))
366, 35mpbird 257 1 (𝐹:𝐴⟶(𝐶m 𝐵) → uncurry 𝐹:(𝐴 × 𝐵)⟶𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  cop 4595   class class class wbr 5107   × cxp 5636  dom cdm 5638  Fun wfun 6505  wf 6507  cfv 6511  (class class class)co 7387  {coprab 7388  cmpo 7389  uncurry cunc 8245  m cmap 8799
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-unc 8247  df-map 8801
This theorem is referenced by:  curunc  37596  matunitlindflem2  37611
  Copyright terms: Public domain W3C validator