Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uncf Structured version   Visualization version   GIF version

Theorem uncf 37606
Description: Functional property of uncurrying. (Contributed by Brendan Leahy, 2-Jun-2021.)
Assertion
Ref Expression
uncf (𝐹:𝐴⟶(𝐶m 𝐵) → uncurry 𝐹:(𝐴 × 𝐵)⟶𝐶)

Proof of Theorem uncf
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ffvelcdm 7101 . . . . . 6 ((𝐹:𝐴⟶(𝐶m 𝐵) ∧ 𝑥𝐴) → (𝐹𝑥) ∈ (𝐶m 𝐵))
2 elmapi 8889 . . . . . 6 ((𝐹𝑥) ∈ (𝐶m 𝐵) → (𝐹𝑥):𝐵𝐶)
31, 2syl 17 . . . . 5 ((𝐹:𝐴⟶(𝐶m 𝐵) ∧ 𝑥𝐴) → (𝐹𝑥):𝐵𝐶)
43ffvelcdmda 7104 . . . 4 (((𝐹:𝐴⟶(𝐶m 𝐵) ∧ 𝑥𝐴) ∧ 𝑦𝐵) → ((𝐹𝑥)‘𝑦) ∈ 𝐶)
54anasss 466 . . 3 ((𝐹:𝐴⟶(𝐶m 𝐵) ∧ (𝑥𝐴𝑦𝐵)) → ((𝐹𝑥)‘𝑦) ∈ 𝐶)
65ralrimivva 3202 . 2 (𝐹:𝐴⟶(𝐶m 𝐵) → ∀𝑥𝐴𝑦𝐵 ((𝐹𝑥)‘𝑦) ∈ 𝐶)
7 df-unc 8293 . . . . 5 uncurry 𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑦(𝐹𝑥)𝑧}
8 df-br 5144 . . . . . . . . . . 11 (𝑦(𝐹𝑥)𝑧 ↔ ⟨𝑦, 𝑧⟩ ∈ (𝐹𝑥))
9 elfvdm 6943 . . . . . . . . . . 11 (⟨𝑦, 𝑧⟩ ∈ (𝐹𝑥) → 𝑥 ∈ dom 𝐹)
108, 9sylbi 217 . . . . . . . . . 10 (𝑦(𝐹𝑥)𝑧𝑥 ∈ dom 𝐹)
11 fdm 6745 . . . . . . . . . . 11 (𝐹:𝐴⟶(𝐶m 𝐵) → dom 𝐹 = 𝐴)
1211eleq2d 2827 . . . . . . . . . 10 (𝐹:𝐴⟶(𝐶m 𝐵) → (𝑥 ∈ dom 𝐹𝑥𝐴))
1310, 12imbitrid 244 . . . . . . . . 9 (𝐹:𝐴⟶(𝐶m 𝐵) → (𝑦(𝐹𝑥)𝑧𝑥𝐴))
1413pm4.71rd 562 . . . . . . . 8 (𝐹:𝐴⟶(𝐶m 𝐵) → (𝑦(𝐹𝑥)𝑧 ↔ (𝑥𝐴𝑦(𝐹𝑥)𝑧)))
15 elmapfun 8906 . . . . . . . . . . 11 ((𝐹𝑥) ∈ (𝐶m 𝐵) → Fun (𝐹𝑥))
16 funbrfv2b 6966 . . . . . . . . . . 11 (Fun (𝐹𝑥) → (𝑦(𝐹𝑥)𝑧 ↔ (𝑦 ∈ dom (𝐹𝑥) ∧ ((𝐹𝑥)‘𝑦) = 𝑧)))
171, 15, 163syl 18 . . . . . . . . . 10 ((𝐹:𝐴⟶(𝐶m 𝐵) ∧ 𝑥𝐴) → (𝑦(𝐹𝑥)𝑧 ↔ (𝑦 ∈ dom (𝐹𝑥) ∧ ((𝐹𝑥)‘𝑦) = 𝑧)))
18 fdm 6745 . . . . . . . . . . . . 13 ((𝐹𝑥):𝐵𝐶 → dom (𝐹𝑥) = 𝐵)
191, 2, 183syl 18 . . . . . . . . . . . 12 ((𝐹:𝐴⟶(𝐶m 𝐵) ∧ 𝑥𝐴) → dom (𝐹𝑥) = 𝐵)
2019eleq2d 2827 . . . . . . . . . . 11 ((𝐹:𝐴⟶(𝐶m 𝐵) ∧ 𝑥𝐴) → (𝑦 ∈ dom (𝐹𝑥) ↔ 𝑦𝐵))
21 eqcom 2744 . . . . . . . . . . . 12 (((𝐹𝑥)‘𝑦) = 𝑧𝑧 = ((𝐹𝑥)‘𝑦))
2221a1i 11 . . . . . . . . . . 11 ((𝐹:𝐴⟶(𝐶m 𝐵) ∧ 𝑥𝐴) → (((𝐹𝑥)‘𝑦) = 𝑧𝑧 = ((𝐹𝑥)‘𝑦)))
2320, 22anbi12d 632 . . . . . . . . . 10 ((𝐹:𝐴⟶(𝐶m 𝐵) ∧ 𝑥𝐴) → ((𝑦 ∈ dom (𝐹𝑥) ∧ ((𝐹𝑥)‘𝑦) = 𝑧) ↔ (𝑦𝐵𝑧 = ((𝐹𝑥)‘𝑦))))
2417, 23bitrd 279 . . . . . . . . 9 ((𝐹:𝐴⟶(𝐶m 𝐵) ∧ 𝑥𝐴) → (𝑦(𝐹𝑥)𝑧 ↔ (𝑦𝐵𝑧 = ((𝐹𝑥)‘𝑦))))
2524pm5.32da 579 . . . . . . . 8 (𝐹:𝐴⟶(𝐶m 𝐵) → ((𝑥𝐴𝑦(𝐹𝑥)𝑧) ↔ (𝑥𝐴 ∧ (𝑦𝐵𝑧 = ((𝐹𝑥)‘𝑦)))))
2614, 25bitrd 279 . . . . . . 7 (𝐹:𝐴⟶(𝐶m 𝐵) → (𝑦(𝐹𝑥)𝑧 ↔ (𝑥𝐴 ∧ (𝑦𝐵𝑧 = ((𝐹𝑥)‘𝑦)))))
27 anass 468 . . . . . . 7 (((𝑥𝐴𝑦𝐵) ∧ 𝑧 = ((𝐹𝑥)‘𝑦)) ↔ (𝑥𝐴 ∧ (𝑦𝐵𝑧 = ((𝐹𝑥)‘𝑦))))
2826, 27bitr4di 289 . . . . . 6 (𝐹:𝐴⟶(𝐶m 𝐵) → (𝑦(𝐹𝑥)𝑧 ↔ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = ((𝐹𝑥)‘𝑦))))
2928oprabbidv 7499 . . . . 5 (𝐹:𝐴⟶(𝐶m 𝐵) → {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑦(𝐹𝑥)𝑧} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = ((𝐹𝑥)‘𝑦))})
307, 29eqtrid 2789 . . . 4 (𝐹:𝐴⟶(𝐶m 𝐵) → uncurry 𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = ((𝐹𝑥)‘𝑦))})
3130feq1d 6720 . . 3 (𝐹:𝐴⟶(𝐶m 𝐵) → (uncurry 𝐹:(𝐴 × 𝐵)⟶𝐶 ↔ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = ((𝐹𝑥)‘𝑦))}:(𝐴 × 𝐵)⟶𝐶))
32 df-mpo 7436 . . . . 5 (𝑥𝐴, 𝑦𝐵 ↦ ((𝐹𝑥)‘𝑦)) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = ((𝐹𝑥)‘𝑦))}
3332eqcomi 2746 . . . 4 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = ((𝐹𝑥)‘𝑦))} = (𝑥𝐴, 𝑦𝐵 ↦ ((𝐹𝑥)‘𝑦))
3433fmpo 8093 . . 3 (∀𝑥𝐴𝑦𝐵 ((𝐹𝑥)‘𝑦) ∈ 𝐶 ↔ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = ((𝐹𝑥)‘𝑦))}:(𝐴 × 𝐵)⟶𝐶)
3531, 34bitr4di 289 . 2 (𝐹:𝐴⟶(𝐶m 𝐵) → (uncurry 𝐹:(𝐴 × 𝐵)⟶𝐶 ↔ ∀𝑥𝐴𝑦𝐵 ((𝐹𝑥)‘𝑦) ∈ 𝐶))
366, 35mpbird 257 1 (𝐹:𝐴⟶(𝐶m 𝐵) → uncurry 𝐹:(𝐴 × 𝐵)⟶𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3061  cop 4632   class class class wbr 5143   × cxp 5683  dom cdm 5685  Fun wfun 6555  wf 6557  cfv 6561  (class class class)co 7431  {coprab 7432  cmpo 7433  uncurry cunc 8291  m cmap 8866
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8014  df-2nd 8015  df-unc 8293  df-map 8868
This theorem is referenced by:  curunc  37609  matunitlindflem2  37624
  Copyright terms: Public domain W3C validator