MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  erovlem Structured version   Visualization version   GIF version

Theorem erovlem 8753
Description: Lemma for erov 8754 and eroprf 8755. (Contributed by Jeff Madsen, 10-Jun-2010.) (Revised by Mario Carneiro, 30-Dec-2014.)
Hypotheses
Ref Expression
eropr.1 ð― = (ðī / 𝑅)
eropr.2 ðū = (ðĩ / 𝑆)
eropr.3 (𝜑 → 𝑇 ∈ 𝑍)
eropr.4 (𝜑 → 𝑅 Er 𝑈)
eropr.5 (𝜑 → 𝑆 Er 𝑉)
eropr.6 (𝜑 → 𝑇 Er 𝑊)
eropr.7 (𝜑 → ðī ⊆ 𝑈)
eropr.8 (𝜑 → ðĩ ⊆ 𝑉)
eropr.9 (𝜑 → ðķ ⊆ 𝑊)
eropr.10 (𝜑 → + :(ðī × ðĩ)âŸķðķ)
eropr.11 ((𝜑 ∧ ((𝑟 ∈ ðī ∧ 𝑠 ∈ ðī) ∧ (ð‘Ą ∈ ðĩ ∧ ð‘Ē ∈ ðĩ))) → ((𝑟𝑅𝑠 ∧ ð‘Ąð‘†ð‘Ē) → (𝑟 + ð‘Ą)𝑇(𝑠 + ð‘Ē)))
eropr.12 âĻĢ = {âŸĻâŸĻð‘Ĩ, ð‘ĶâŸĐ, 𝑧âŸĐ âˆĢ ∃𝑝 ∈ ðī ∃𝑞 ∈ ðĩ ((ð‘Ĩ = [𝑝]𝑅 ∧ ð‘Ķ = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)}
Assertion
Ref Expression
erovlem (𝜑 → âĻĢ = (ð‘Ĩ ∈ ð―, ð‘Ķ ∈ ðū â†Ķ (â„Đ𝑧∃𝑝 ∈ ðī ∃𝑞 ∈ ðĩ ((ð‘Ĩ = [𝑝]𝑅 ∧ ð‘Ķ = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇))))
Distinct variable groups:   𝑞,𝑝,𝑟,𝑠,ð‘Ą,ð‘Ē,ð‘Ĩ,ð‘Ķ,𝑧,ðī   ðĩ,𝑝,𝑞,𝑟,𝑠,ð‘Ą,ð‘Ē,ð‘Ĩ,ð‘Ķ,𝑧   ð―,𝑝,𝑞,ð‘Ĩ,ð‘Ķ,𝑧   𝑅,𝑝,𝑞,𝑟,𝑠,ð‘Ą,ð‘Ē,ð‘Ĩ,ð‘Ķ,𝑧   ðū,𝑝,𝑞,ð‘Ĩ,ð‘Ķ,𝑧   𝑆,𝑝,𝑞,𝑟,𝑠,ð‘Ą,ð‘Ē,ð‘Ĩ,ð‘Ķ,𝑧   + ,𝑝,𝑞,𝑟,𝑠,ð‘Ą,ð‘Ē,ð‘Ĩ,ð‘Ķ,𝑧   𝜑,𝑝,𝑞,𝑟,𝑠,ð‘Ą,ð‘Ē,ð‘Ĩ,ð‘Ķ,𝑧   𝑇,𝑝,𝑞,𝑟,𝑠,ð‘Ą,ð‘Ē,ð‘Ĩ,ð‘Ķ,𝑧
Allowed substitution hints:   ðķ(ð‘Ĩ,ð‘Ķ,𝑧,ð‘Ē,ð‘Ą,𝑠,𝑟,𝑞,𝑝)   âĻĢ (ð‘Ĩ,ð‘Ķ,𝑧,ð‘Ē,ð‘Ą,𝑠,𝑟,𝑞,𝑝)   𝑈(ð‘Ĩ,ð‘Ķ,𝑧,ð‘Ē,ð‘Ą,𝑠,𝑟,𝑞,𝑝)   ð―(ð‘Ē,ð‘Ą,𝑠,𝑟)   ðū(ð‘Ē,ð‘Ą,𝑠,𝑟)   𝑉(ð‘Ĩ,ð‘Ķ,𝑧,ð‘Ē,ð‘Ą,𝑠,𝑟,𝑞,𝑝)   𝑊(ð‘Ĩ,ð‘Ķ,𝑧,ð‘Ē,ð‘Ą,𝑠,𝑟,𝑞,𝑝)   𝑍(ð‘Ĩ,ð‘Ķ,𝑧,ð‘Ē,ð‘Ą,𝑠,𝑟,𝑞,𝑝)

Proof of Theorem erovlem
Dummy variable ð‘Ī is distinct from all other variables.
StepHypRef Expression
1 simpl 484 . . . . . . . 8 (((ð‘Ĩ = [𝑝]𝑅 ∧ ð‘Ķ = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇) → (ð‘Ĩ = [𝑝]𝑅 ∧ ð‘Ķ = [𝑞]𝑆))
21reximi 3088 . . . . . . 7 (∃𝑞 ∈ ðĩ ((ð‘Ĩ = [𝑝]𝑅 ∧ ð‘Ķ = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇) → ∃𝑞 ∈ ðĩ (ð‘Ĩ = [𝑝]𝑅 ∧ ð‘Ķ = [𝑞]𝑆))
32reximi 3088 . . . . . 6 (∃𝑝 ∈ ðī ∃𝑞 ∈ ðĩ ((ð‘Ĩ = [𝑝]𝑅 ∧ ð‘Ķ = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇) → ∃𝑝 ∈ ðī ∃𝑞 ∈ ðĩ (ð‘Ĩ = [𝑝]𝑅 ∧ ð‘Ķ = [𝑞]𝑆))
4 eropr.1 . . . . . . . . . 10 ð― = (ðī / 𝑅)
54eleq2i 2830 . . . . . . . . 9 (ð‘Ĩ ∈ ð― ↔ ð‘Ĩ ∈ (ðī / 𝑅))
6 vex 3450 . . . . . . . . . 10 ð‘Ĩ ∈ V
76elqs 8709 . . . . . . . . 9 (ð‘Ĩ ∈ (ðī / 𝑅) ↔ ∃𝑝 ∈ ðī ð‘Ĩ = [𝑝]𝑅)
85, 7bitri 275 . . . . . . . 8 (ð‘Ĩ ∈ ð― ↔ ∃𝑝 ∈ ðī ð‘Ĩ = [𝑝]𝑅)
9 eropr.2 . . . . . . . . . 10 ðū = (ðĩ / 𝑆)
109eleq2i 2830 . . . . . . . . 9 (ð‘Ķ ∈ ðū ↔ ð‘Ķ ∈ (ðĩ / 𝑆))
11 vex 3450 . . . . . . . . . 10 ð‘Ķ ∈ V
1211elqs 8709 . . . . . . . . 9 (ð‘Ķ ∈ (ðĩ / 𝑆) ↔ ∃𝑞 ∈ ðĩ ð‘Ķ = [𝑞]𝑆)
1310, 12bitri 275 . . . . . . . 8 (ð‘Ķ ∈ ðū ↔ ∃𝑞 ∈ ðĩ ð‘Ķ = [𝑞]𝑆)
148, 13anbi12i 628 . . . . . . 7 ((ð‘Ĩ ∈ ð― ∧ ð‘Ķ ∈ ðū) ↔ (∃𝑝 ∈ ðī ð‘Ĩ = [𝑝]𝑅 ∧ ∃𝑞 ∈ ðĩ ð‘Ķ = [𝑞]𝑆))
15 reeanv 3218 . . . . . . 7 (∃𝑝 ∈ ðī ∃𝑞 ∈ ðĩ (ð‘Ĩ = [𝑝]𝑅 ∧ ð‘Ķ = [𝑞]𝑆) ↔ (∃𝑝 ∈ ðī ð‘Ĩ = [𝑝]𝑅 ∧ ∃𝑞 ∈ ðĩ ð‘Ķ = [𝑞]𝑆))
1614, 15bitr4i 278 . . . . . 6 ((ð‘Ĩ ∈ ð― ∧ ð‘Ķ ∈ ðū) ↔ ∃𝑝 ∈ ðī ∃𝑞 ∈ ðĩ (ð‘Ĩ = [𝑝]𝑅 ∧ ð‘Ķ = [𝑞]𝑆))
173, 16sylibr 233 . . . . 5 (∃𝑝 ∈ ðī ∃𝑞 ∈ ðĩ ((ð‘Ĩ = [𝑝]𝑅 ∧ ð‘Ķ = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇) → (ð‘Ĩ ∈ ð― ∧ ð‘Ķ ∈ ðū))
1817pm4.71ri 562 . . . 4 (∃𝑝 ∈ ðī ∃𝑞 ∈ ðĩ ((ð‘Ĩ = [𝑝]𝑅 ∧ ð‘Ķ = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇) ↔ ((ð‘Ĩ ∈ ð― ∧ ð‘Ķ ∈ ðū) ∧ ∃𝑝 ∈ ðī ∃𝑞 ∈ ðĩ ((ð‘Ĩ = [𝑝]𝑅 ∧ ð‘Ķ = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)))
19 eropr.3 . . . . . . . 8 (𝜑 → 𝑇 ∈ 𝑍)
20 eropr.4 . . . . . . . 8 (𝜑 → 𝑅 Er 𝑈)
21 eropr.5 . . . . . . . 8 (𝜑 → 𝑆 Er 𝑉)
22 eropr.6 . . . . . . . 8 (𝜑 → 𝑇 Er 𝑊)
23 eropr.7 . . . . . . . 8 (𝜑 → ðī ⊆ 𝑈)
24 eropr.8 . . . . . . . 8 (𝜑 → ðĩ ⊆ 𝑉)
25 eropr.9 . . . . . . . 8 (𝜑 → ðķ ⊆ 𝑊)
26 eropr.10 . . . . . . . 8 (𝜑 → + :(ðī × ðĩ)âŸķðķ)
27 eropr.11 . . . . . . . 8 ((𝜑 ∧ ((𝑟 ∈ ðī ∧ 𝑠 ∈ ðī) ∧ (ð‘Ą ∈ ðĩ ∧ ð‘Ē ∈ ðĩ))) → ((𝑟𝑅𝑠 ∧ ð‘Ąð‘†ð‘Ē) → (𝑟 + ð‘Ą)𝑇(𝑠 + ð‘Ē)))
284, 9, 19, 20, 21, 22, 23, 24, 25, 26, 27eroveu 8752 . . . . . . 7 ((𝜑 ∧ (ð‘Ĩ ∈ ð― ∧ ð‘Ķ ∈ ðū)) → ∃!𝑧∃𝑝 ∈ ðī ∃𝑞 ∈ ðĩ ((ð‘Ĩ = [𝑝]𝑅 ∧ ð‘Ķ = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇))
29 iota1 6474 . . . . . . 7 (∃!𝑧∃𝑝 ∈ ðī ∃𝑞 ∈ ðĩ ((ð‘Ĩ = [𝑝]𝑅 ∧ ð‘Ķ = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇) → (∃𝑝 ∈ ðī ∃𝑞 ∈ ðĩ ((ð‘Ĩ = [𝑝]𝑅 ∧ ð‘Ķ = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇) ↔ (â„Đ𝑧∃𝑝 ∈ ðī ∃𝑞 ∈ ðĩ ((ð‘Ĩ = [𝑝]𝑅 ∧ ð‘Ķ = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)) = 𝑧))
3028, 29syl 17 . . . . . 6 ((𝜑 ∧ (ð‘Ĩ ∈ ð― ∧ ð‘Ķ ∈ ðū)) → (∃𝑝 ∈ ðī ∃𝑞 ∈ ðĩ ((ð‘Ĩ = [𝑝]𝑅 ∧ ð‘Ķ = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇) ↔ (â„Đ𝑧∃𝑝 ∈ ðī ∃𝑞 ∈ ðĩ ((ð‘Ĩ = [𝑝]𝑅 ∧ ð‘Ķ = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)) = 𝑧))
31 eqcom 2744 . . . . . 6 ((â„Đ𝑧∃𝑝 ∈ ðī ∃𝑞 ∈ ðĩ ((ð‘Ĩ = [𝑝]𝑅 ∧ ð‘Ķ = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)) = 𝑧 ↔ 𝑧 = (â„Đ𝑧∃𝑝 ∈ ðī ∃𝑞 ∈ ðĩ ((ð‘Ĩ = [𝑝]𝑅 ∧ ð‘Ķ = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)))
3230, 31bitrdi 287 . . . . 5 ((𝜑 ∧ (ð‘Ĩ ∈ ð― ∧ ð‘Ķ ∈ ðū)) → (∃𝑝 ∈ ðī ∃𝑞 ∈ ðĩ ((ð‘Ĩ = [𝑝]𝑅 ∧ ð‘Ķ = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇) ↔ 𝑧 = (â„Đ𝑧∃𝑝 ∈ ðī ∃𝑞 ∈ ðĩ ((ð‘Ĩ = [𝑝]𝑅 ∧ ð‘Ķ = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇))))
3332pm5.32da 580 . . . 4 (𝜑 → (((ð‘Ĩ ∈ ð― ∧ ð‘Ķ ∈ ðū) ∧ ∃𝑝 ∈ ðī ∃𝑞 ∈ ðĩ ((ð‘Ĩ = [𝑝]𝑅 ∧ ð‘Ķ = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)) ↔ ((ð‘Ĩ ∈ ð― ∧ ð‘Ķ ∈ ðū) ∧ 𝑧 = (â„Đ𝑧∃𝑝 ∈ ðī ∃𝑞 ∈ ðĩ ((ð‘Ĩ = [𝑝]𝑅 ∧ ð‘Ķ = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)))))
3418, 33bitrid 283 . . 3 (𝜑 → (∃𝑝 ∈ ðī ∃𝑞 ∈ ðĩ ((ð‘Ĩ = [𝑝]𝑅 ∧ ð‘Ķ = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇) ↔ ((ð‘Ĩ ∈ ð― ∧ ð‘Ķ ∈ ðū) ∧ 𝑧 = (â„Đ𝑧∃𝑝 ∈ ðī ∃𝑞 ∈ ðĩ ((ð‘Ĩ = [𝑝]𝑅 ∧ ð‘Ķ = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)))))
3534oprabbidv 7424 . 2 (𝜑 → {âŸĻâŸĻð‘Ĩ, ð‘ĶâŸĐ, 𝑧âŸĐ âˆĢ ∃𝑝 ∈ ðī ∃𝑞 ∈ ðĩ ((ð‘Ĩ = [𝑝]𝑅 ∧ ð‘Ķ = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)} = {âŸĻâŸĻð‘Ĩ, ð‘ĶâŸĐ, 𝑧âŸĐ âˆĢ ((ð‘Ĩ ∈ ð― ∧ ð‘Ķ ∈ ðū) ∧ 𝑧 = (â„Đ𝑧∃𝑝 ∈ ðī ∃𝑞 ∈ ðĩ ((ð‘Ĩ = [𝑝]𝑅 ∧ ð‘Ķ = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)))})
36 eropr.12 . 2 âĻĢ = {âŸĻâŸĻð‘Ĩ, ð‘ĶâŸĐ, 𝑧âŸĐ âˆĢ ∃𝑝 ∈ ðī ∃𝑞 ∈ ðĩ ((ð‘Ĩ = [𝑝]𝑅 ∧ ð‘Ķ = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)}
37 df-mpo 7363 . . 3 (ð‘Ĩ ∈ ð―, ð‘Ķ ∈ ðū â†Ķ (â„Đ𝑧∃𝑝 ∈ ðī ∃𝑞 ∈ ðĩ ((ð‘Ĩ = [𝑝]𝑅 ∧ ð‘Ķ = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇))) = {âŸĻâŸĻð‘Ĩ, ð‘ĶâŸĐ, ð‘ĪâŸĐ âˆĢ ((ð‘Ĩ ∈ ð― ∧ ð‘Ķ ∈ ðū) ∧ ð‘Ī = (â„Đ𝑧∃𝑝 ∈ ðī ∃𝑞 ∈ ðĩ ((ð‘Ĩ = [𝑝]𝑅 ∧ ð‘Ķ = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)))}
38 nfv 1918 . . . 4 â„ēð‘Ī((ð‘Ĩ ∈ ð― ∧ ð‘Ķ ∈ ðū) ∧ 𝑧 = (â„Đ𝑧∃𝑝 ∈ ðī ∃𝑞 ∈ ðĩ ((ð‘Ĩ = [𝑝]𝑅 ∧ ð‘Ķ = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)))
39 nfv 1918 . . . . 5 â„ē𝑧(ð‘Ĩ ∈ ð― ∧ ð‘Ķ ∈ ðū)
40 nfiota1 6451 . . . . . 6 â„ē𝑧(â„Đ𝑧∃𝑝 ∈ ðī ∃𝑞 ∈ ðĩ ((ð‘Ĩ = [𝑝]𝑅 ∧ ð‘Ķ = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇))
4140nfeq2 2925 . . . . 5 â„ē𝑧 ð‘Ī = (â„Đ𝑧∃𝑝 ∈ ðī ∃𝑞 ∈ ðĩ ((ð‘Ĩ = [𝑝]𝑅 ∧ ð‘Ķ = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇))
4239, 41nfan 1903 . . . 4 â„ē𝑧((ð‘Ĩ ∈ ð― ∧ ð‘Ķ ∈ ðū) ∧ ð‘Ī = (â„Đ𝑧∃𝑝 ∈ ðī ∃𝑞 ∈ ðĩ ((ð‘Ĩ = [𝑝]𝑅 ∧ ð‘Ķ = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)))
43 eqeq1 2741 . . . . 5 (𝑧 = ð‘Ī → (𝑧 = (â„Đ𝑧∃𝑝 ∈ ðī ∃𝑞 ∈ ðĩ ((ð‘Ĩ = [𝑝]𝑅 ∧ ð‘Ķ = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)) ↔ ð‘Ī = (â„Đ𝑧∃𝑝 ∈ ðī ∃𝑞 ∈ ðĩ ((ð‘Ĩ = [𝑝]𝑅 ∧ ð‘Ķ = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇))))
4443anbi2d 630 . . . 4 (𝑧 = ð‘Ī → (((ð‘Ĩ ∈ ð― ∧ ð‘Ķ ∈ ðū) ∧ 𝑧 = (â„Đ𝑧∃𝑝 ∈ ðī ∃𝑞 ∈ ðĩ ((ð‘Ĩ = [𝑝]𝑅 ∧ ð‘Ķ = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇))) ↔ ((ð‘Ĩ ∈ ð― ∧ ð‘Ķ ∈ ðū) ∧ ð‘Ī = (â„Đ𝑧∃𝑝 ∈ ðī ∃𝑞 ∈ ðĩ ((ð‘Ĩ = [𝑝]𝑅 ∧ ð‘Ķ = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)))))
4538, 42, 44cbvoprab3 7449 . . 3 {âŸĻâŸĻð‘Ĩ, ð‘ĶâŸĐ, 𝑧âŸĐ âˆĢ ((ð‘Ĩ ∈ ð― ∧ ð‘Ķ ∈ ðū) ∧ 𝑧 = (â„Đ𝑧∃𝑝 ∈ ðī ∃𝑞 ∈ ðĩ ((ð‘Ĩ = [𝑝]𝑅 ∧ ð‘Ķ = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)))} = {âŸĻâŸĻð‘Ĩ, ð‘ĶâŸĐ, ð‘ĪâŸĐ âˆĢ ((ð‘Ĩ ∈ ð― ∧ ð‘Ķ ∈ ðū) ∧ ð‘Ī = (â„Đ𝑧∃𝑝 ∈ ðī ∃𝑞 ∈ ðĩ ((ð‘Ĩ = [𝑝]𝑅 ∧ ð‘Ķ = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)))}
4637, 45eqtr4i 2768 . 2 (ð‘Ĩ ∈ ð―, ð‘Ķ ∈ ðū â†Ķ (â„Đ𝑧∃𝑝 ∈ ðī ∃𝑞 ∈ ðĩ ((ð‘Ĩ = [𝑝]𝑅 ∧ ð‘Ķ = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇))) = {âŸĻâŸĻð‘Ĩ, ð‘ĶâŸĐ, 𝑧âŸĐ âˆĢ ((ð‘Ĩ ∈ ð― ∧ ð‘Ķ ∈ ðū) ∧ 𝑧 = (â„Đ𝑧∃𝑝 ∈ ðī ∃𝑞 ∈ ðĩ ((ð‘Ĩ = [𝑝]𝑅 ∧ ð‘Ķ = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)))}
4735, 36, 463eqtr4g 2802 1 (𝜑 → âĻĢ = (ð‘Ĩ ∈ ð―, ð‘Ķ ∈ ðū â†Ķ (â„Đ𝑧∃𝑝 ∈ ðī ∃𝑞 ∈ ðĩ ((ð‘Ĩ = [𝑝]𝑅 ∧ ð‘Ķ = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇))))
Colors of variables: wff setvar class
Syntax hints:   → wi 4   ↔ wb 205   ∧ wa 397   = wceq 1542   ∈ wcel 2107  âˆƒ!weu 2567  âˆƒwrex 3074   ⊆ wss 3911   class class class wbr 5106   × cxp 5632  â„Đcio 6447  âŸķwf 6493  (class class class)co 7358  {coprab 7359   ∈ cmpo 7360   Er wer 8646  [cec 8647   / cqs 8648
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-sep 5257  ax-nul 5264  ax-pr 5385  ax-un 7673
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-ral 3066  df-rex 3075  df-rab 3409  df-v 3448  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-br 5107  df-opab 5169  df-id 5532  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-fv 6505  df-ov 7361  df-oprab 7362  df-mpo 7363  df-er 8649  df-ec 8651  df-qs 8655
This theorem is referenced by:  erov  8754  eroprf  8755
  Copyright terms: Public domain W3C validator