MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  erovlem Structured version   Visualization version   GIF version

Theorem erovlem 8380
Description: Lemma for erov 8381 and eroprf 8382. (Contributed by Jeff Madsen, 10-Jun-2010.) (Revised by Mario Carneiro, 30-Dec-2014.)
Hypotheses
Ref Expression
eropr.1 𝐽 = (𝐴 / 𝑅)
eropr.2 𝐾 = (𝐵 / 𝑆)
eropr.3 (𝜑𝑇𝑍)
eropr.4 (𝜑𝑅 Er 𝑈)
eropr.5 (𝜑𝑆 Er 𝑉)
eropr.6 (𝜑𝑇 Er 𝑊)
eropr.7 (𝜑𝐴𝑈)
eropr.8 (𝜑𝐵𝑉)
eropr.9 (𝜑𝐶𝑊)
eropr.10 (𝜑+ :(𝐴 × 𝐵)⟶𝐶)
eropr.11 ((𝜑 ∧ ((𝑟𝐴𝑠𝐴) ∧ (𝑡𝐵𝑢𝐵))) → ((𝑟𝑅𝑠𝑡𝑆𝑢) → (𝑟 + 𝑡)𝑇(𝑠 + 𝑢)))
eropr.12 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ∃𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)}
Assertion
Ref Expression
erovlem (𝜑 = (𝑥𝐽, 𝑦𝐾 ↦ (℩𝑧𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇))))
Distinct variable groups:   𝑞,𝑝,𝑟,𝑠,𝑡,𝑢,𝑥,𝑦,𝑧,𝐴   𝐵,𝑝,𝑞,𝑟,𝑠,𝑡,𝑢,𝑥,𝑦,𝑧   𝐽,𝑝,𝑞,𝑥,𝑦,𝑧   𝑅,𝑝,𝑞,𝑟,𝑠,𝑡,𝑢,𝑥,𝑦,𝑧   𝐾,𝑝,𝑞,𝑥,𝑦,𝑧   𝑆,𝑝,𝑞,𝑟,𝑠,𝑡,𝑢,𝑥,𝑦,𝑧   + ,𝑝,𝑞,𝑟,𝑠,𝑡,𝑢,𝑥,𝑦,𝑧   𝜑,𝑝,𝑞,𝑟,𝑠,𝑡,𝑢,𝑥,𝑦,𝑧   𝑇,𝑝,𝑞,𝑟,𝑠,𝑡,𝑢,𝑥,𝑦,𝑧
Allowed substitution hints:   𝐶(𝑥,𝑦,𝑧,𝑢,𝑡,𝑠,𝑟,𝑞,𝑝)   (𝑥,𝑦,𝑧,𝑢,𝑡,𝑠,𝑟,𝑞,𝑝)   𝑈(𝑥,𝑦,𝑧,𝑢,𝑡,𝑠,𝑟,𝑞,𝑝)   𝐽(𝑢,𝑡,𝑠,𝑟)   𝐾(𝑢,𝑡,𝑠,𝑟)   𝑉(𝑥,𝑦,𝑧,𝑢,𝑡,𝑠,𝑟,𝑞,𝑝)   𝑊(𝑥,𝑦,𝑧,𝑢,𝑡,𝑠,𝑟,𝑞,𝑝)   𝑍(𝑥,𝑦,𝑧,𝑢,𝑡,𝑠,𝑟,𝑞,𝑝)

Proof of Theorem erovlem
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 simpl 486 . . . . . . . 8 (((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇) → (𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆))
21reximi 3209 . . . . . . 7 (∃𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇) → ∃𝑞𝐵 (𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆))
32reximi 3209 . . . . . 6 (∃𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇) → ∃𝑝𝐴𝑞𝐵 (𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆))
4 eropr.1 . . . . . . . . . 10 𝐽 = (𝐴 / 𝑅)
54eleq2i 2884 . . . . . . . . 9 (𝑥𝐽𝑥 ∈ (𝐴 / 𝑅))
6 vex 3447 . . . . . . . . . 10 𝑥 ∈ V
76elqs 8336 . . . . . . . . 9 (𝑥 ∈ (𝐴 / 𝑅) ↔ ∃𝑝𝐴 𝑥 = [𝑝]𝑅)
85, 7bitri 278 . . . . . . . 8 (𝑥𝐽 ↔ ∃𝑝𝐴 𝑥 = [𝑝]𝑅)
9 eropr.2 . . . . . . . . . 10 𝐾 = (𝐵 / 𝑆)
109eleq2i 2884 . . . . . . . . 9 (𝑦𝐾𝑦 ∈ (𝐵 / 𝑆))
11 vex 3447 . . . . . . . . . 10 𝑦 ∈ V
1211elqs 8336 . . . . . . . . 9 (𝑦 ∈ (𝐵 / 𝑆) ↔ ∃𝑞𝐵 𝑦 = [𝑞]𝑆)
1310, 12bitri 278 . . . . . . . 8 (𝑦𝐾 ↔ ∃𝑞𝐵 𝑦 = [𝑞]𝑆)
148, 13anbi12i 629 . . . . . . 7 ((𝑥𝐽𝑦𝐾) ↔ (∃𝑝𝐴 𝑥 = [𝑝]𝑅 ∧ ∃𝑞𝐵 𝑦 = [𝑞]𝑆))
15 reeanv 3323 . . . . . . 7 (∃𝑝𝐴𝑞𝐵 (𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ↔ (∃𝑝𝐴 𝑥 = [𝑝]𝑅 ∧ ∃𝑞𝐵 𝑦 = [𝑞]𝑆))
1614, 15bitr4i 281 . . . . . 6 ((𝑥𝐽𝑦𝐾) ↔ ∃𝑝𝐴𝑞𝐵 (𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆))
173, 16sylibr 237 . . . . 5 (∃𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇) → (𝑥𝐽𝑦𝐾))
1817pm4.71ri 564 . . . 4 (∃𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇) ↔ ((𝑥𝐽𝑦𝐾) ∧ ∃𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)))
19 eropr.3 . . . . . . . 8 (𝜑𝑇𝑍)
20 eropr.4 . . . . . . . 8 (𝜑𝑅 Er 𝑈)
21 eropr.5 . . . . . . . 8 (𝜑𝑆 Er 𝑉)
22 eropr.6 . . . . . . . 8 (𝜑𝑇 Er 𝑊)
23 eropr.7 . . . . . . . 8 (𝜑𝐴𝑈)
24 eropr.8 . . . . . . . 8 (𝜑𝐵𝑉)
25 eropr.9 . . . . . . . 8 (𝜑𝐶𝑊)
26 eropr.10 . . . . . . . 8 (𝜑+ :(𝐴 × 𝐵)⟶𝐶)
27 eropr.11 . . . . . . . 8 ((𝜑 ∧ ((𝑟𝐴𝑠𝐴) ∧ (𝑡𝐵𝑢𝐵))) → ((𝑟𝑅𝑠𝑡𝑆𝑢) → (𝑟 + 𝑡)𝑇(𝑠 + 𝑢)))
284, 9, 19, 20, 21, 22, 23, 24, 25, 26, 27eroveu 8379 . . . . . . 7 ((𝜑 ∧ (𝑥𝐽𝑦𝐾)) → ∃!𝑧𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇))
29 iota1 6305 . . . . . . 7 (∃!𝑧𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇) → (∃𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇) ↔ (℩𝑧𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)) = 𝑧))
3028, 29syl 17 . . . . . 6 ((𝜑 ∧ (𝑥𝐽𝑦𝐾)) → (∃𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇) ↔ (℩𝑧𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)) = 𝑧))
31 eqcom 2808 . . . . . 6 ((℩𝑧𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)) = 𝑧𝑧 = (℩𝑧𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)))
3230, 31syl6bb 290 . . . . 5 ((𝜑 ∧ (𝑥𝐽𝑦𝐾)) → (∃𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇) ↔ 𝑧 = (℩𝑧𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇))))
3332pm5.32da 582 . . . 4 (𝜑 → (((𝑥𝐽𝑦𝐾) ∧ ∃𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)) ↔ ((𝑥𝐽𝑦𝐾) ∧ 𝑧 = (℩𝑧𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)))))
3418, 33syl5bb 286 . . 3 (𝜑 → (∃𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇) ↔ ((𝑥𝐽𝑦𝐾) ∧ 𝑧 = (℩𝑧𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)))))
3534oprabbidv 7203 . 2 (𝜑 → {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ∃𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐽𝑦𝐾) ∧ 𝑧 = (℩𝑧𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)))})
36 eropr.12 . 2 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ∃𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)}
37 df-mpo 7144 . . 3 (𝑥𝐽, 𝑦𝐾 ↦ (℩𝑧𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇))) = {⟨⟨𝑥, 𝑦⟩, 𝑤⟩ ∣ ((𝑥𝐽𝑦𝐾) ∧ 𝑤 = (℩𝑧𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)))}
38 nfv 1915 . . . 4 𝑤((𝑥𝐽𝑦𝐾) ∧ 𝑧 = (℩𝑧𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)))
39 nfv 1915 . . . . 5 𝑧(𝑥𝐽𝑦𝐾)
40 nfiota1 6289 . . . . . 6 𝑧(℩𝑧𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇))
4140nfeq2 2975 . . . . 5 𝑧 𝑤 = (℩𝑧𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇))
4239, 41nfan 1900 . . . 4 𝑧((𝑥𝐽𝑦𝐾) ∧ 𝑤 = (℩𝑧𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)))
43 eqeq1 2805 . . . . 5 (𝑧 = 𝑤 → (𝑧 = (℩𝑧𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)) ↔ 𝑤 = (℩𝑧𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇))))
4443anbi2d 631 . . . 4 (𝑧 = 𝑤 → (((𝑥𝐽𝑦𝐾) ∧ 𝑧 = (℩𝑧𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇))) ↔ ((𝑥𝐽𝑦𝐾) ∧ 𝑤 = (℩𝑧𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)))))
4538, 42, 44cbvoprab3 7228 . . 3 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐽𝑦𝐾) ∧ 𝑧 = (℩𝑧𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)))} = {⟨⟨𝑥, 𝑦⟩, 𝑤⟩ ∣ ((𝑥𝐽𝑦𝐾) ∧ 𝑤 = (℩𝑧𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)))}
4637, 45eqtr4i 2827 . 2 (𝑥𝐽, 𝑦𝐾 ↦ (℩𝑧𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇))) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐽𝑦𝐾) ∧ 𝑧 = (℩𝑧𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)))}
4735, 36, 463eqtr4g 2861 1 (𝜑 = (𝑥𝐽, 𝑦𝐾 ↦ (℩𝑧𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2112  ∃!weu 2631  wrex 3110  wss 3884   class class class wbr 5033   × cxp 5521  cio 6285  wf 6324  (class class class)co 7139  {coprab 7140  cmpo 7141   Er wer 8273  [cec 8274   / cqs 8275
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pr 5298  ax-un 7445
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-ral 3114  df-rex 3115  df-rab 3118  df-v 3446  df-sbc 3724  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4247  df-if 4429  df-sn 4529  df-pr 4531  df-op 4535  df-uni 4804  df-br 5034  df-opab 5096  df-id 5428  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-fv 6336  df-ov 7142  df-oprab 7143  df-mpo 7144  df-er 8276  df-ec 8278  df-qs 8282
This theorem is referenced by:  erov  8381  eroprf  8382
  Copyright terms: Public domain W3C validator