MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  erovlem Structured version   Visualization version   GIF version

Theorem erovlem 8838
Description: Lemma for erov 8839 and eroprf 8840. (Contributed by Jeff Madsen, 10-Jun-2010.) (Revised by Mario Carneiro, 30-Dec-2014.)
Hypotheses
Ref Expression
eropr.1 ð― = (ðī / 𝑅)
eropr.2 ðū = (ðĩ / 𝑆)
eropr.3 (𝜑 → 𝑇 ∈ 𝑍)
eropr.4 (𝜑 → 𝑅 Er 𝑈)
eropr.5 (𝜑 → 𝑆 Er 𝑉)
eropr.6 (𝜑 → 𝑇 Er 𝑊)
eropr.7 (𝜑 → ðī ⊆ 𝑈)
eropr.8 (𝜑 → ðĩ ⊆ 𝑉)
eropr.9 (𝜑 → ðķ ⊆ 𝑊)
eropr.10 (𝜑 → + :(ðī × ðĩ)âŸķðķ)
eropr.11 ((𝜑 ∧ ((𝑟 ∈ ðī ∧ 𝑠 ∈ ðī) ∧ (ð‘Ą ∈ ðĩ ∧ ð‘Ē ∈ ðĩ))) → ((𝑟𝑅𝑠 ∧ ð‘Ąð‘†ð‘Ē) → (𝑟 + ð‘Ą)𝑇(𝑠 + ð‘Ē)))
eropr.12 âĻĢ = {âŸĻâŸĻð‘Ĩ, ð‘ĶâŸĐ, 𝑧âŸĐ âˆĢ ∃𝑝 ∈ ðī ∃𝑞 ∈ ðĩ ((ð‘Ĩ = [𝑝]𝑅 ∧ ð‘Ķ = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)}
Assertion
Ref Expression
erovlem (𝜑 → âĻĢ = (ð‘Ĩ ∈ ð―, ð‘Ķ ∈ ðū â†Ķ (â„Đ𝑧∃𝑝 ∈ ðī ∃𝑞 ∈ ðĩ ((ð‘Ĩ = [𝑝]𝑅 ∧ ð‘Ķ = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇))))
Distinct variable groups:   𝑞,𝑝,𝑟,𝑠,ð‘Ą,ð‘Ē,ð‘Ĩ,ð‘Ķ,𝑧,ðī   ðĩ,𝑝,𝑞,𝑟,𝑠,ð‘Ą,ð‘Ē,ð‘Ĩ,ð‘Ķ,𝑧   ð―,𝑝,𝑞,ð‘Ĩ,ð‘Ķ,𝑧   𝑅,𝑝,𝑞,𝑟,𝑠,ð‘Ą,ð‘Ē,ð‘Ĩ,ð‘Ķ,𝑧   ðū,𝑝,𝑞,ð‘Ĩ,ð‘Ķ,𝑧   𝑆,𝑝,𝑞,𝑟,𝑠,ð‘Ą,ð‘Ē,ð‘Ĩ,ð‘Ķ,𝑧   + ,𝑝,𝑞,𝑟,𝑠,ð‘Ą,ð‘Ē,ð‘Ĩ,ð‘Ķ,𝑧   𝜑,𝑝,𝑞,𝑟,𝑠,ð‘Ą,ð‘Ē,ð‘Ĩ,ð‘Ķ,𝑧   𝑇,𝑝,𝑞,𝑟,𝑠,ð‘Ą,ð‘Ē,ð‘Ĩ,ð‘Ķ,𝑧
Allowed substitution hints:   ðķ(ð‘Ĩ,ð‘Ķ,𝑧,ð‘Ē,ð‘Ą,𝑠,𝑟,𝑞,𝑝)   âĻĢ (ð‘Ĩ,ð‘Ķ,𝑧,ð‘Ē,ð‘Ą,𝑠,𝑟,𝑞,𝑝)   𝑈(ð‘Ĩ,ð‘Ķ,𝑧,ð‘Ē,ð‘Ą,𝑠,𝑟,𝑞,𝑝)   ð―(ð‘Ē,ð‘Ą,𝑠,𝑟)   ðū(ð‘Ē,ð‘Ą,𝑠,𝑟)   𝑉(ð‘Ĩ,ð‘Ķ,𝑧,ð‘Ē,ð‘Ą,𝑠,𝑟,𝑞,𝑝)   𝑊(ð‘Ĩ,ð‘Ķ,𝑧,ð‘Ē,ð‘Ą,𝑠,𝑟,𝑞,𝑝)   𝑍(ð‘Ĩ,ð‘Ķ,𝑧,ð‘Ē,ð‘Ą,𝑠,𝑟,𝑞,𝑝)

Proof of Theorem erovlem
Dummy variable ð‘Ī is distinct from all other variables.
StepHypRef Expression
1 simpl 481 . . . . . . . 8 (((ð‘Ĩ = [𝑝]𝑅 ∧ ð‘Ķ = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇) → (ð‘Ĩ = [𝑝]𝑅 ∧ ð‘Ķ = [𝑞]𝑆))
21reximi 3081 . . . . . . 7 (∃𝑞 ∈ ðĩ ((ð‘Ĩ = [𝑝]𝑅 ∧ ð‘Ķ = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇) → ∃𝑞 ∈ ðĩ (ð‘Ĩ = [𝑝]𝑅 ∧ ð‘Ķ = [𝑞]𝑆))
32reximi 3081 . . . . . 6 (∃𝑝 ∈ ðī ∃𝑞 ∈ ðĩ ((ð‘Ĩ = [𝑝]𝑅 ∧ ð‘Ķ = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇) → ∃𝑝 ∈ ðī ∃𝑞 ∈ ðĩ (ð‘Ĩ = [𝑝]𝑅 ∧ ð‘Ķ = [𝑞]𝑆))
4 eropr.1 . . . . . . . . . 10 ð― = (ðī / 𝑅)
54eleq2i 2821 . . . . . . . . 9 (ð‘Ĩ ∈ ð― ↔ ð‘Ĩ ∈ (ðī / 𝑅))
6 vex 3477 . . . . . . . . . 10 ð‘Ĩ ∈ V
76elqs 8794 . . . . . . . . 9 (ð‘Ĩ ∈ (ðī / 𝑅) ↔ ∃𝑝 ∈ ðī ð‘Ĩ = [𝑝]𝑅)
85, 7bitri 274 . . . . . . . 8 (ð‘Ĩ ∈ ð― ↔ ∃𝑝 ∈ ðī ð‘Ĩ = [𝑝]𝑅)
9 eropr.2 . . . . . . . . . 10 ðū = (ðĩ / 𝑆)
109eleq2i 2821 . . . . . . . . 9 (ð‘Ķ ∈ ðū ↔ ð‘Ķ ∈ (ðĩ / 𝑆))
11 vex 3477 . . . . . . . . . 10 ð‘Ķ ∈ V
1211elqs 8794 . . . . . . . . 9 (ð‘Ķ ∈ (ðĩ / 𝑆) ↔ ∃𝑞 ∈ ðĩ ð‘Ķ = [𝑞]𝑆)
1310, 12bitri 274 . . . . . . . 8 (ð‘Ķ ∈ ðū ↔ ∃𝑞 ∈ ðĩ ð‘Ķ = [𝑞]𝑆)
148, 13anbi12i 626 . . . . . . 7 ((ð‘Ĩ ∈ ð― ∧ ð‘Ķ ∈ ðū) ↔ (∃𝑝 ∈ ðī ð‘Ĩ = [𝑝]𝑅 ∧ ∃𝑞 ∈ ðĩ ð‘Ķ = [𝑞]𝑆))
15 reeanv 3224 . . . . . . 7 (∃𝑝 ∈ ðī ∃𝑞 ∈ ðĩ (ð‘Ĩ = [𝑝]𝑅 ∧ ð‘Ķ = [𝑞]𝑆) ↔ (∃𝑝 ∈ ðī ð‘Ĩ = [𝑝]𝑅 ∧ ∃𝑞 ∈ ðĩ ð‘Ķ = [𝑞]𝑆))
1614, 15bitr4i 277 . . . . . 6 ((ð‘Ĩ ∈ ð― ∧ ð‘Ķ ∈ ðū) ↔ ∃𝑝 ∈ ðī ∃𝑞 ∈ ðĩ (ð‘Ĩ = [𝑝]𝑅 ∧ ð‘Ķ = [𝑞]𝑆))
173, 16sylibr 233 . . . . 5 (∃𝑝 ∈ ðī ∃𝑞 ∈ ðĩ ((ð‘Ĩ = [𝑝]𝑅 ∧ ð‘Ķ = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇) → (ð‘Ĩ ∈ ð― ∧ ð‘Ķ ∈ ðū))
1817pm4.71ri 559 . . . 4 (∃𝑝 ∈ ðī ∃𝑞 ∈ ðĩ ((ð‘Ĩ = [𝑝]𝑅 ∧ ð‘Ķ = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇) ↔ ((ð‘Ĩ ∈ ð― ∧ ð‘Ķ ∈ ðū) ∧ ∃𝑝 ∈ ðī ∃𝑞 ∈ ðĩ ((ð‘Ĩ = [𝑝]𝑅 ∧ ð‘Ķ = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)))
19 eropr.3 . . . . . . . 8 (𝜑 → 𝑇 ∈ 𝑍)
20 eropr.4 . . . . . . . 8 (𝜑 → 𝑅 Er 𝑈)
21 eropr.5 . . . . . . . 8 (𝜑 → 𝑆 Er 𝑉)
22 eropr.6 . . . . . . . 8 (𝜑 → 𝑇 Er 𝑊)
23 eropr.7 . . . . . . . 8 (𝜑 → ðī ⊆ 𝑈)
24 eropr.8 . . . . . . . 8 (𝜑 → ðĩ ⊆ 𝑉)
25 eropr.9 . . . . . . . 8 (𝜑 → ðķ ⊆ 𝑊)
26 eropr.10 . . . . . . . 8 (𝜑 → + :(ðī × ðĩ)âŸķðķ)
27 eropr.11 . . . . . . . 8 ((𝜑 ∧ ((𝑟 ∈ ðī ∧ 𝑠 ∈ ðī) ∧ (ð‘Ą ∈ ðĩ ∧ ð‘Ē ∈ ðĩ))) → ((𝑟𝑅𝑠 ∧ ð‘Ąð‘†ð‘Ē) → (𝑟 + ð‘Ą)𝑇(𝑠 + ð‘Ē)))
284, 9, 19, 20, 21, 22, 23, 24, 25, 26, 27eroveu 8837 . . . . . . 7 ((𝜑 ∧ (ð‘Ĩ ∈ ð― ∧ ð‘Ķ ∈ ðū)) → ∃!𝑧∃𝑝 ∈ ðī ∃𝑞 ∈ ðĩ ((ð‘Ĩ = [𝑝]𝑅 ∧ ð‘Ķ = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇))
29 iota1 6530 . . . . . . 7 (∃!𝑧∃𝑝 ∈ ðī ∃𝑞 ∈ ðĩ ((ð‘Ĩ = [𝑝]𝑅 ∧ ð‘Ķ = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇) → (∃𝑝 ∈ ðī ∃𝑞 ∈ ðĩ ((ð‘Ĩ = [𝑝]𝑅 ∧ ð‘Ķ = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇) ↔ (â„Đ𝑧∃𝑝 ∈ ðī ∃𝑞 ∈ ðĩ ((ð‘Ĩ = [𝑝]𝑅 ∧ ð‘Ķ = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)) = 𝑧))
3028, 29syl 17 . . . . . 6 ((𝜑 ∧ (ð‘Ĩ ∈ ð― ∧ ð‘Ķ ∈ ðū)) → (∃𝑝 ∈ ðī ∃𝑞 ∈ ðĩ ((ð‘Ĩ = [𝑝]𝑅 ∧ ð‘Ķ = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇) ↔ (â„Đ𝑧∃𝑝 ∈ ðī ∃𝑞 ∈ ðĩ ((ð‘Ĩ = [𝑝]𝑅 ∧ ð‘Ķ = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)) = 𝑧))
31 eqcom 2735 . . . . . 6 ((â„Đ𝑧∃𝑝 ∈ ðī ∃𝑞 ∈ ðĩ ((ð‘Ĩ = [𝑝]𝑅 ∧ ð‘Ķ = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)) = 𝑧 ↔ 𝑧 = (â„Đ𝑧∃𝑝 ∈ ðī ∃𝑞 ∈ ðĩ ((ð‘Ĩ = [𝑝]𝑅 ∧ ð‘Ķ = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)))
3230, 31bitrdi 286 . . . . 5 ((𝜑 ∧ (ð‘Ĩ ∈ ð― ∧ ð‘Ķ ∈ ðū)) → (∃𝑝 ∈ ðī ∃𝑞 ∈ ðĩ ((ð‘Ĩ = [𝑝]𝑅 ∧ ð‘Ķ = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇) ↔ 𝑧 = (â„Đ𝑧∃𝑝 ∈ ðī ∃𝑞 ∈ ðĩ ((ð‘Ĩ = [𝑝]𝑅 ∧ ð‘Ķ = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇))))
3332pm5.32da 577 . . . 4 (𝜑 → (((ð‘Ĩ ∈ ð― ∧ ð‘Ķ ∈ ðū) ∧ ∃𝑝 ∈ ðī ∃𝑞 ∈ ðĩ ((ð‘Ĩ = [𝑝]𝑅 ∧ ð‘Ķ = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)) ↔ ((ð‘Ĩ ∈ ð― ∧ ð‘Ķ ∈ ðū) ∧ 𝑧 = (â„Đ𝑧∃𝑝 ∈ ðī ∃𝑞 ∈ ðĩ ((ð‘Ĩ = [𝑝]𝑅 ∧ ð‘Ķ = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)))))
3418, 33bitrid 282 . . 3 (𝜑 → (∃𝑝 ∈ ðī ∃𝑞 ∈ ðĩ ((ð‘Ĩ = [𝑝]𝑅 ∧ ð‘Ķ = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇) ↔ ((ð‘Ĩ ∈ ð― ∧ ð‘Ķ ∈ ðū) ∧ 𝑧 = (â„Đ𝑧∃𝑝 ∈ ðī ∃𝑞 ∈ ðĩ ((ð‘Ĩ = [𝑝]𝑅 ∧ ð‘Ķ = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)))))
3534oprabbidv 7492 . 2 (𝜑 → {âŸĻâŸĻð‘Ĩ, ð‘ĶâŸĐ, 𝑧âŸĐ âˆĢ ∃𝑝 ∈ ðī ∃𝑞 ∈ ðĩ ((ð‘Ĩ = [𝑝]𝑅 ∧ ð‘Ķ = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)} = {âŸĻâŸĻð‘Ĩ, ð‘ĶâŸĐ, 𝑧âŸĐ âˆĢ ((ð‘Ĩ ∈ ð― ∧ ð‘Ķ ∈ ðū) ∧ 𝑧 = (â„Đ𝑧∃𝑝 ∈ ðī ∃𝑞 ∈ ðĩ ((ð‘Ĩ = [𝑝]𝑅 ∧ ð‘Ķ = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)))})
36 eropr.12 . 2 âĻĢ = {âŸĻâŸĻð‘Ĩ, ð‘ĶâŸĐ, 𝑧âŸĐ âˆĢ ∃𝑝 ∈ ðī ∃𝑞 ∈ ðĩ ((ð‘Ĩ = [𝑝]𝑅 ∧ ð‘Ķ = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)}
37 df-mpo 7431 . . 3 (ð‘Ĩ ∈ ð―, ð‘Ķ ∈ ðū â†Ķ (â„Đ𝑧∃𝑝 ∈ ðī ∃𝑞 ∈ ðĩ ((ð‘Ĩ = [𝑝]𝑅 ∧ ð‘Ķ = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇))) = {âŸĻâŸĻð‘Ĩ, ð‘ĶâŸĐ, ð‘ĪâŸĐ âˆĢ ((ð‘Ĩ ∈ ð― ∧ ð‘Ķ ∈ ðū) ∧ ð‘Ī = (â„Đ𝑧∃𝑝 ∈ ðī ∃𝑞 ∈ ðĩ ((ð‘Ĩ = [𝑝]𝑅 ∧ ð‘Ķ = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)))}
38 nfv 1909 . . . 4 â„ēð‘Ī((ð‘Ĩ ∈ ð― ∧ ð‘Ķ ∈ ðū) ∧ 𝑧 = (â„Đ𝑧∃𝑝 ∈ ðī ∃𝑞 ∈ ðĩ ((ð‘Ĩ = [𝑝]𝑅 ∧ ð‘Ķ = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)))
39 nfv 1909 . . . . 5 â„ē𝑧(ð‘Ĩ ∈ ð― ∧ ð‘Ķ ∈ ðū)
40 nfiota1 6507 . . . . . 6 â„ē𝑧(â„Đ𝑧∃𝑝 ∈ ðī ∃𝑞 ∈ ðĩ ((ð‘Ĩ = [𝑝]𝑅 ∧ ð‘Ķ = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇))
4140nfeq2 2917 . . . . 5 â„ē𝑧 ð‘Ī = (â„Đ𝑧∃𝑝 ∈ ðī ∃𝑞 ∈ ðĩ ((ð‘Ĩ = [𝑝]𝑅 ∧ ð‘Ķ = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇))
4239, 41nfan 1894 . . . 4 â„ē𝑧((ð‘Ĩ ∈ ð― ∧ ð‘Ķ ∈ ðū) ∧ ð‘Ī = (â„Đ𝑧∃𝑝 ∈ ðī ∃𝑞 ∈ ðĩ ((ð‘Ĩ = [𝑝]𝑅 ∧ ð‘Ķ = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)))
43 eqeq1 2732 . . . . 5 (𝑧 = ð‘Ī → (𝑧 = (â„Đ𝑧∃𝑝 ∈ ðī ∃𝑞 ∈ ðĩ ((ð‘Ĩ = [𝑝]𝑅 ∧ ð‘Ķ = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)) ↔ ð‘Ī = (â„Đ𝑧∃𝑝 ∈ ðī ∃𝑞 ∈ ðĩ ((ð‘Ĩ = [𝑝]𝑅 ∧ ð‘Ķ = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇))))
4443anbi2d 628 . . . 4 (𝑧 = ð‘Ī → (((ð‘Ĩ ∈ ð― ∧ ð‘Ķ ∈ ðū) ∧ 𝑧 = (â„Đ𝑧∃𝑝 ∈ ðī ∃𝑞 ∈ ðĩ ((ð‘Ĩ = [𝑝]𝑅 ∧ ð‘Ķ = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇))) ↔ ((ð‘Ĩ ∈ ð― ∧ ð‘Ķ ∈ ðū) ∧ ð‘Ī = (â„Đ𝑧∃𝑝 ∈ ðī ∃𝑞 ∈ ðĩ ((ð‘Ĩ = [𝑝]𝑅 ∧ ð‘Ķ = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)))))
4538, 42, 44cbvoprab3 7517 . . 3 {âŸĻâŸĻð‘Ĩ, ð‘ĶâŸĐ, 𝑧âŸĐ âˆĢ ((ð‘Ĩ ∈ ð― ∧ ð‘Ķ ∈ ðū) ∧ 𝑧 = (â„Đ𝑧∃𝑝 ∈ ðī ∃𝑞 ∈ ðĩ ((ð‘Ĩ = [𝑝]𝑅 ∧ ð‘Ķ = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)))} = {âŸĻâŸĻð‘Ĩ, ð‘ĶâŸĐ, ð‘ĪâŸĐ âˆĢ ((ð‘Ĩ ∈ ð― ∧ ð‘Ķ ∈ ðū) ∧ ð‘Ī = (â„Đ𝑧∃𝑝 ∈ ðī ∃𝑞 ∈ ðĩ ((ð‘Ĩ = [𝑝]𝑅 ∧ ð‘Ķ = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)))}
4637, 45eqtr4i 2759 . 2 (ð‘Ĩ ∈ ð―, ð‘Ķ ∈ ðū â†Ķ (â„Đ𝑧∃𝑝 ∈ ðī ∃𝑞 ∈ ðĩ ((ð‘Ĩ = [𝑝]𝑅 ∧ ð‘Ķ = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇))) = {âŸĻâŸĻð‘Ĩ, ð‘ĶâŸĐ, 𝑧âŸĐ âˆĢ ((ð‘Ĩ ∈ ð― ∧ ð‘Ķ ∈ ðū) ∧ 𝑧 = (â„Đ𝑧∃𝑝 ∈ ðī ∃𝑞 ∈ ðĩ ((ð‘Ĩ = [𝑝]𝑅 ∧ ð‘Ķ = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)))}
4735, 36, 463eqtr4g 2793 1 (𝜑 → âĻĢ = (ð‘Ĩ ∈ ð―, ð‘Ķ ∈ ðū â†Ķ (â„Đ𝑧∃𝑝 ∈ ðī ∃𝑞 ∈ ðĩ ((ð‘Ĩ = [𝑝]𝑅 ∧ ð‘Ķ = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇))))
Colors of variables: wff setvar class
Syntax hints:   → wi 4   ↔ wb 205   ∧ wa 394   = wceq 1533   ∈ wcel 2098  âˆƒ!weu 2557  âˆƒwrex 3067   ⊆ wss 3949   class class class wbr 5152   × cxp 5680  â„Đcio 6503  âŸķwf 6549  (class class class)co 7426  {coprab 7427   ∈ cmpo 7428   Er wer 8728  [cec 8729   / cqs 8730
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pr 5433  ax-un 7746
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3431  df-v 3475  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-br 5153  df-opab 5215  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-fv 6561  df-ov 7429  df-oprab 7430  df-mpo 7431  df-er 8731  df-ec 8733  df-qs 8737
This theorem is referenced by:  erov  8839  eroprf  8840
  Copyright terms: Public domain W3C validator