| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpoeq123dva | Structured version Visualization version GIF version | ||
| Description: An equality deduction for the maps-to notation. (Contributed by Mario Carneiro, 26-Jan-2017.) |
| Ref | Expression |
|---|---|
| mpoeq123dv.1 | ⊢ (𝜑 → 𝐴 = 𝐷) |
| mpoeq123dva.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐸) |
| mpoeq123dva.3 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → 𝐶 = 𝐹) |
| Ref | Expression |
|---|---|
| mpoeq123dva | ⊢ (𝜑 → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐷, 𝑦 ∈ 𝐸 ↦ 𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpoeq123dva.3 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → 𝐶 = 𝐹) | |
| 2 | 1 | eqeq2d 2741 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝑧 = 𝐶 ↔ 𝑧 = 𝐹)) |
| 3 | 2 | pm5.32da 579 | . . . 4 ⊢ (𝜑 → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐹))) |
| 4 | mpoeq123dva.2 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐸) | |
| 5 | 4 | eleq2d 2815 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑦 ∈ 𝐵 ↔ 𝑦 ∈ 𝐸)) |
| 6 | 5 | pm5.32da 579 | . . . . . 6 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐸))) |
| 7 | mpoeq123dv.1 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 = 𝐷) | |
| 8 | 7 | eleq2d 2815 | . . . . . . 7 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐷)) |
| 9 | 8 | anbi1d 631 | . . . . . 6 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐸) ↔ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐸))) |
| 10 | 6, 9 | bitrd 279 | . . . . 5 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ↔ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐸))) |
| 11 | 10 | anbi1d 631 | . . . 4 ⊢ (𝜑 → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐹) ↔ ((𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐸) ∧ 𝑧 = 𝐹))) |
| 12 | 3, 11 | bitrd 279 | . . 3 ⊢ (𝜑 → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶) ↔ ((𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐸) ∧ 𝑧 = 𝐹))) |
| 13 | 12 | oprabbidv 7458 | . 2 ⊢ (𝜑 → {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐸) ∧ 𝑧 = 𝐹)}) |
| 14 | df-mpo 7395 | . 2 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} | |
| 15 | df-mpo 7395 | . 2 ⊢ (𝑥 ∈ 𝐷, 𝑦 ∈ 𝐸 ↦ 𝐹) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐸) ∧ 𝑧 = 𝐹)} | |
| 16 | 13, 14, 15 | 3eqtr4g 2790 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐷, 𝑦 ∈ 𝐸 ↦ 𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {coprab 7391 ∈ cmpo 7392 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-oprab 7394 df-mpo 7395 |
| This theorem is referenced by: mpoeq123dv 7467 natpropd 17948 fucpropd 17949 curfpropd 18201 hofpropd 18235 rngcifuestrc 20555 funcrngcsetc 20556 funcrngcsetcALT 20557 funcringcsetc 20590 rrxdsfi 25318 eengv 28913 elntg 28918 submat1n 33802 rrxtopnfi 46292 eenglngeehlnm 48732 iinfconstbas 49059 uppropd 49174 prcofpropd 49372 diag1f1olem 49526 lanpropd 49608 ranpropd 49609 |
| Copyright terms: Public domain | W3C validator |