MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpoeq123dva Structured version   Visualization version   GIF version

Theorem mpoeq123dva 7524
Description: An equality deduction for the maps-to notation. (Contributed by Mario Carneiro, 26-Jan-2017.)
Hypotheses
Ref Expression
mpoeq123dv.1 (𝜑𝐴 = 𝐷)
mpoeq123dva.2 ((𝜑𝑥𝐴) → 𝐵 = 𝐸)
mpoeq123dva.3 ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → 𝐶 = 𝐹)
Assertion
Ref Expression
mpoeq123dva (𝜑 → (𝑥𝐴, 𝑦𝐵𝐶) = (𝑥𝐷, 𝑦𝐸𝐹))
Distinct variable groups:   𝜑,𝑥   𝜑,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦)   𝐷(𝑥,𝑦)   𝐸(𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem mpoeq123dva
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 mpoeq123dva.3 . . . . . 6 ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → 𝐶 = 𝐹)
21eqeq2d 2751 . . . . 5 ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → (𝑧 = 𝐶𝑧 = 𝐹))
32pm5.32da 578 . . . 4 (𝜑 → (((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶) ↔ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐹)))
4 mpoeq123dva.2 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝐵 = 𝐸)
54eleq2d 2830 . . . . . . 7 ((𝜑𝑥𝐴) → (𝑦𝐵𝑦𝐸))
65pm5.32da 578 . . . . . 6 (𝜑 → ((𝑥𝐴𝑦𝐵) ↔ (𝑥𝐴𝑦𝐸)))
7 mpoeq123dv.1 . . . . . . . 8 (𝜑𝐴 = 𝐷)
87eleq2d 2830 . . . . . . 7 (𝜑 → (𝑥𝐴𝑥𝐷))
98anbi1d 630 . . . . . 6 (𝜑 → ((𝑥𝐴𝑦𝐸) ↔ (𝑥𝐷𝑦𝐸)))
106, 9bitrd 279 . . . . 5 (𝜑 → ((𝑥𝐴𝑦𝐵) ↔ (𝑥𝐷𝑦𝐸)))
1110anbi1d 630 . . . 4 (𝜑 → (((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐹) ↔ ((𝑥𝐷𝑦𝐸) ∧ 𝑧 = 𝐹)))
123, 11bitrd 279 . . 3 (𝜑 → (((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶) ↔ ((𝑥𝐷𝑦𝐸) ∧ 𝑧 = 𝐹)))
1312oprabbidv 7516 . 2 (𝜑 → {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐷𝑦𝐸) ∧ 𝑧 = 𝐹)})
14 df-mpo 7453 . 2 (𝑥𝐴, 𝑦𝐵𝐶) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)}
15 df-mpo 7453 . 2 (𝑥𝐷, 𝑦𝐸𝐹) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐷𝑦𝐸) ∧ 𝑧 = 𝐹)}
1613, 14, 153eqtr4g 2805 1 (𝜑 → (𝑥𝐴, 𝑦𝐵𝐶) = (𝑥𝐷, 𝑦𝐸𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  {coprab 7449  cmpo 7450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-oprab 7452  df-mpo 7453
This theorem is referenced by:  mpoeq123dv  7525  natpropd  18046  fucpropd  18047  curfpropd  18303  hofpropd  18337  rngcifuestrc  20661  funcrngcsetc  20662  funcrngcsetcALT  20663  funcringcsetc  20696  rrxdsfi  25464  eengv  29012  elntg  29017  submat1n  33751  rrxtopnfi  46208  eenglngeehlnm  48473
  Copyright terms: Public domain W3C validator