Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mpoeq123dva | Structured version Visualization version GIF version |
Description: An equality deduction for the maps-to notation. (Contributed by Mario Carneiro, 26-Jan-2017.) |
Ref | Expression |
---|---|
mpoeq123dv.1 | ⊢ (𝜑 → 𝐴 = 𝐷) |
mpoeq123dva.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐸) |
mpoeq123dva.3 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → 𝐶 = 𝐹) |
Ref | Expression |
---|---|
mpoeq123dva | ⊢ (𝜑 → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐷, 𝑦 ∈ 𝐸 ↦ 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpoeq123dva.3 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → 𝐶 = 𝐹) | |
2 | 1 | eqeq2d 2749 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝑧 = 𝐶 ↔ 𝑧 = 𝐹)) |
3 | 2 | pm5.32da 579 | . . . 4 ⊢ (𝜑 → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐹))) |
4 | mpoeq123dva.2 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐸) | |
5 | 4 | eleq2d 2824 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑦 ∈ 𝐵 ↔ 𝑦 ∈ 𝐸)) |
6 | 5 | pm5.32da 579 | . . . . . 6 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐸))) |
7 | mpoeq123dv.1 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 = 𝐷) | |
8 | 7 | eleq2d 2824 | . . . . . . 7 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐷)) |
9 | 8 | anbi1d 630 | . . . . . 6 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐸) ↔ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐸))) |
10 | 6, 9 | bitrd 278 | . . . . 5 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ↔ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐸))) |
11 | 10 | anbi1d 630 | . . . 4 ⊢ (𝜑 → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐹) ↔ ((𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐸) ∧ 𝑧 = 𝐹))) |
12 | 3, 11 | bitrd 278 | . . 3 ⊢ (𝜑 → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶) ↔ ((𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐸) ∧ 𝑧 = 𝐹))) |
13 | 12 | oprabbidv 7341 | . 2 ⊢ (𝜑 → {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐸) ∧ 𝑧 = 𝐹)}) |
14 | df-mpo 7280 | . 2 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} | |
15 | df-mpo 7280 | . 2 ⊢ (𝑥 ∈ 𝐷, 𝑦 ∈ 𝐸 ↦ 𝐹) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐸) ∧ 𝑧 = 𝐹)} | |
16 | 13, 14, 15 | 3eqtr4g 2803 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐷, 𝑦 ∈ 𝐸 ↦ 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 {coprab 7276 ∈ cmpo 7277 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-oprab 7279 df-mpo 7280 |
This theorem is referenced by: mpoeq123dv 7350 natpropd 17694 fucpropd 17695 curfpropd 17951 hofpropd 17985 rrxdsfi 24575 istrkgl 26819 eengv 27347 elntg 27352 submat1n 31755 rrxtopnfi 43828 rngcifuestrc 45555 funcrngcsetc 45556 funcrngcsetcALT 45557 funcringcsetc 45593 eenglngeehlnm 46085 |
Copyright terms: Public domain | W3C validator |