Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mpoeq123dva | Structured version Visualization version GIF version |
Description: An equality deduction for the maps-to notation. (Contributed by Mario Carneiro, 26-Jan-2017.) |
Ref | Expression |
---|---|
mpoeq123dv.1 | ⊢ (𝜑 → 𝐴 = 𝐷) |
mpoeq123dva.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐸) |
mpoeq123dva.3 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → 𝐶 = 𝐹) |
Ref | Expression |
---|---|
mpoeq123dva | ⊢ (𝜑 → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐷, 𝑦 ∈ 𝐸 ↦ 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpoeq123dva.3 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → 𝐶 = 𝐹) | |
2 | 1 | eqeq2d 2748 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝑧 = 𝐶 ↔ 𝑧 = 𝐹)) |
3 | 2 | pm5.32da 582 | . . . 4 ⊢ (𝜑 → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐹))) |
4 | mpoeq123dva.2 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐸) | |
5 | 4 | eleq2d 2823 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑦 ∈ 𝐵 ↔ 𝑦 ∈ 𝐸)) |
6 | 5 | pm5.32da 582 | . . . . . 6 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐸))) |
7 | mpoeq123dv.1 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 = 𝐷) | |
8 | 7 | eleq2d 2823 | . . . . . . 7 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐷)) |
9 | 8 | anbi1d 633 | . . . . . 6 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐸) ↔ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐸))) |
10 | 6, 9 | bitrd 282 | . . . . 5 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ↔ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐸))) |
11 | 10 | anbi1d 633 | . . . 4 ⊢ (𝜑 → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐹) ↔ ((𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐸) ∧ 𝑧 = 𝐹))) |
12 | 3, 11 | bitrd 282 | . . 3 ⊢ (𝜑 → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶) ↔ ((𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐸) ∧ 𝑧 = 𝐹))) |
13 | 12 | oprabbidv 7277 | . 2 ⊢ (𝜑 → {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐸) ∧ 𝑧 = 𝐹)}) |
14 | df-mpo 7218 | . 2 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} | |
15 | df-mpo 7218 | . 2 ⊢ (𝑥 ∈ 𝐷, 𝑦 ∈ 𝐸 ↦ 𝐹) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐸) ∧ 𝑧 = 𝐹)} | |
16 | 13, 14, 15 | 3eqtr4g 2803 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐷, 𝑦 ∈ 𝐸 ↦ 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2110 {coprab 7214 ∈ cmpo 7215 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-12 2175 ax-ext 2708 |
This theorem depends on definitions: df-bi 210 df-an 400 df-ex 1788 df-nf 1792 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-oprab 7217 df-mpo 7218 |
This theorem is referenced by: mpoeq123dv 7286 natpropd 17485 fucpropd 17486 curfpropd 17741 hofpropd 17775 rrxdsfi 24308 istrkgl 26549 eengv 27070 elntg 27075 submat1n 31469 rrxtopnfi 43503 rngcifuestrc 45228 funcrngcsetc 45229 funcrngcsetcALT 45230 funcringcsetc 45266 eenglngeehlnm 45758 |
Copyright terms: Public domain | W3C validator |