| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpoeq123dva | Structured version Visualization version GIF version | ||
| Description: An equality deduction for the maps-to notation. (Contributed by Mario Carneiro, 26-Jan-2017.) |
| Ref | Expression |
|---|---|
| mpoeq123dv.1 | ⊢ (𝜑 → 𝐴 = 𝐷) |
| mpoeq123dva.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐸) |
| mpoeq123dva.3 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → 𝐶 = 𝐹) |
| Ref | Expression |
|---|---|
| mpoeq123dva | ⊢ (𝜑 → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐷, 𝑦 ∈ 𝐸 ↦ 𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpoeq123dva.3 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → 𝐶 = 𝐹) | |
| 2 | 1 | eqeq2d 2740 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝑧 = 𝐶 ↔ 𝑧 = 𝐹)) |
| 3 | 2 | pm5.32da 579 | . . . 4 ⊢ (𝜑 → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐹))) |
| 4 | mpoeq123dva.2 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐸) | |
| 5 | 4 | eleq2d 2814 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑦 ∈ 𝐵 ↔ 𝑦 ∈ 𝐸)) |
| 6 | 5 | pm5.32da 579 | . . . . . 6 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐸))) |
| 7 | mpoeq123dv.1 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 = 𝐷) | |
| 8 | 7 | eleq2d 2814 | . . . . . . 7 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐷)) |
| 9 | 8 | anbi1d 631 | . . . . . 6 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐸) ↔ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐸))) |
| 10 | 6, 9 | bitrd 279 | . . . . 5 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ↔ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐸))) |
| 11 | 10 | anbi1d 631 | . . . 4 ⊢ (𝜑 → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐹) ↔ ((𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐸) ∧ 𝑧 = 𝐹))) |
| 12 | 3, 11 | bitrd 279 | . . 3 ⊢ (𝜑 → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶) ↔ ((𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐸) ∧ 𝑧 = 𝐹))) |
| 13 | 12 | oprabbidv 7419 | . 2 ⊢ (𝜑 → {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐸) ∧ 𝑧 = 𝐹)}) |
| 14 | df-mpo 7358 | . 2 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} | |
| 15 | df-mpo 7358 | . 2 ⊢ (𝑥 ∈ 𝐷, 𝑦 ∈ 𝐸 ↦ 𝐹) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐸) ∧ 𝑧 = 𝐹)} | |
| 16 | 13, 14, 15 | 3eqtr4g 2789 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐷, 𝑦 ∈ 𝐸 ↦ 𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {coprab 7354 ∈ cmpo 7355 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-oprab 7357 df-mpo 7358 |
| This theorem is referenced by: mpoeq123dv 7428 natpropd 17905 fucpropd 17906 curfpropd 18158 hofpropd 18192 rngcifuestrc 20543 funcrngcsetc 20544 funcrngcsetcALT 20545 funcringcsetc 20578 rrxdsfi 25328 eengv 28943 elntg 28948 submat1n 33791 rrxtopnfi 46288 eenglngeehlnm 48744 iinfconstbas 49071 uppropd 49186 prcofpropd 49384 diag1f1olem 49538 lanpropd 49620 ranpropd 49621 |
| Copyright terms: Public domain | W3C validator |